
Journal of Statistical Physics. Vol. 83. Nos. 3/4. 1996 

Free Energy and Some Sample Path Properties of a 
Random Walk with Random Potential 

Sergio Albeverio  I and Xian Yin Zhou  -~ 

Receil,ed Jamtary 24. 1995; final September 27, 1995 

We study tile asymptotic behavior of tile free energy for a model (defined by 
Sinai) of one-dimensional random walk with random potential. In particular, we 
obtain a central limit theorem and a strong law of large numbers for this free 
energy. We use some results on the free energy to study some sample path proper- 
ties of this random walk which are related respectively to its recurrence and 
localization. Some exponents describing the recurrence and localization are found. 
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1. I N T R O D U C T I O N  

To s tudy the (physical)  behav io r  of  d i sordered  systems several  mode l s  have 
been developed.  Models  descr ibing he te ropo lymers  are  of  pa r t i cu la r  inter-  
est, also due to their  impor t ance  in biology.  In a mode l  of  this type first 
p roposed  by Gare l  e t a / .  14) the he t e ropo lymer  chain  consists  of  two types 
of  monomers :  " h y d r o p h o b i c "  (A) and  "hydroph i l e"  (B), in terac t ing  with an 
( ideal ized)  selective interface between water  and  ano the r  n o n p o l a r  solvent  
(e.g., oil). Gare l  et al. compare  the mode l  with exper imenta l  s i tua t ions  and  
discuss in physical  terms a loca l iza t ion  t ransi t ion.  This work  is related to 
subsequent  work  by o ther  authors .  We cite here in pa r t i cu la r  the work  by 
G r o s b e r g  et al., Is~ who prov ided  a more  deta i led  physical  s tudy of  the 
local iza t ion t rans i t ion  for a simplified vers ion of  the mode l  (see ref. 5 for 
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further references). More precisely, ref. 5 investigated the behavior of the 
free energy near the point of transition from a delocalized to a localized 
regime for two basic models, chains with periodic resp. "annealed random" 
sequence links. Based on the work in refs. 4 and 5, Sinai c91 suggested a 
model of one-dimensional random walk with random potential, where the 
two links A and B appear as a Bernoulli environment, and established 
some precise sample path properties in this model. The main aim of the 
present paper is to study the asymptotic behavior of the free energy of 
Sinai's model and then discuss further sample properties. We will mainly 
prove that the central limit theorem holds for this free energy, and then use 
results on the free energy to discuss some path properties of this random 
walk, such as recurrence and localization, which are indeed different from 
the corresponding properties of the ordinary random walk. Concerning our 
results on the free energy, we had to develop our own methods, despite a 
large literature on the free energy of some other disordered systems (see, 
e.g., refs. 1, 3, 8, and 11 and references therein). In fact, it does not seem 
easy to adapt those methods to directly solve the problems posed by the 
present model. Now let us introduce the model we study in this paper. 

Let {S,,},,~>o be a simple random walk in Z ~, starting at the origin, on 
a probability space (I2, o~, P), and the bk ~ { -- 1, 1 }, k >1 O, be independent 
identically distributed (i.i.d.) random variables on a probability space 
(/2; ~-, P), which are independent of {Sn},,~o on the product space (t2 x ~,  
o ~ |  p |  For convenience, we let E and L" be, respectively, the 
expectations with respect to P and /3, and assume Ebk = 0, Vk >/0. As in 
ref. 9, let the function U(x) be defined by 

! x > O  

U(x) = x = 0 

1, x < O  

The partition function of this system is defined by 

'• ,) Z I~ = E exp bk U(Sk , 
\ k = O  / 

v,i >/1 

where 1/71 e (0, oo) is a parameter representing the strength of the disorder. 
The free energy of this system is the random variable log Z ~~ Define a 
new probability measure by 

P~~176 f.4 exp bk U(Sk dP, 
" k = O  / 

VA ~ 
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As mentioned in ref. 9, it is very interesting to study some properties 
such as recurrence and localization of this random walk. For some sequen- 
ces {k,,} ,, ~ with lira . . . .  k,, = 0% Sinai tgl already obtained some estimates 
for the probability Pt~ =x) .  

In this paper, both the central limit theorem and the strong law of 
large numbers are obtained for log Z t~ Using these limit theorems, we 
prove some sample path properties (e.g., recurrence and localization) of 
this random walk {S,,},,~o under the probability measure p~o.,,i. Unfor- 
tunately, we are still unable to show that the limit lim . . . .  P~~ ) 
exists with probability one for any fixed k >~ 1. Quite recently, Bolthausen 
and Hollander t 12) discussed the localization-delocalization phase transition 
for the model with nonsymmetric random environment (i.e., /~bk ~ 0). 

This paper is organized as follows. In Section 2 we study the 
asymptotic behavior of the mean value of this free energy. More precisely, 
we prove that there is a constant v(fl)e(O, oo) for t i C 0  such that (see 
Proposition 2.6 below) 

Iog)_~Z ~~ v(fl) ~< O(1)----~l~ n 

The main aim of Section 3 is to prove that the variance of the free energy 
behaves roughly as n (for n--* oe): 

C~n <~ Var(log Zt~ <~ C2 n, n >~ 1 (1.1) 

for some constants C1, Cz ~ (0, oo). The upper bound in (1.1) can easily be 
proven by using the approach given in ref. 11. However, the proof of the 
lower bound in (1.1) is not so simple. In Section 3 we concentrate our main 
attention on the proof of this lower bound. In Section 4 we first prove that 
the variance of the free energy behaves exactly as ),(fl)n for some 
y(fl)~(0, oe) with f l ~ 0 ,  and then prove that the central limit theorem 
holds for the free energy. Sections 5 and 6 are devoted to discussions of the 
sample path properties of the random walk {S,,} under the probability 
measure U~ first discuss the asymptotic behavior of the quantity 

zI,,=: max { j - i : S , = S / = O , U ( S , + , )  . . . . .  U(S/_,)#O} 
1 <~i<j<~n 

The main result (see Theorem 5.3 below) is that there is a constant 
/l(fl)E(0, oO) with f l ~ 0  such that 

P~O'")((logn)--l A,,E(lt(fl)+e)--l ,(~(fl)--e)--l) P' 1, n ~ o o  
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for all e e (0, p(fl)). We remark that in the case of the simple random walk, 
A,, behaves roughly like n. In Section 6 we discuss the asymptotic behavior 
of max1 ~g~<,, IS;[ under the probability measure pro.,,. We prove that for 
any given fl :~0 there is a constant Z(fl)~ (0, ~ )  such that the following 
holds for all e ~ (0, 1) (see Theorem 6.1 below): 

Pt~ max IS i l~[ (1 -e ) z ( f l ) , ( l+e ) z ( f l ) ] )  P, 1, n ~ o v  
] ~ < i ~ < n  

The following relation between p(fl) and X(fl) for fl:/:0 is also derived in 
Section 6: 

~(21e(/~))-'/:, 
z(fl)  = ( (  1/4 + 2p(fl)) - l ,  

It(P) ~ (0, 1/8] 

p(f l)  > 1/8 

For the case of the ordinary random walk in Z I, however, from the scaling 
property one can see that max I ~i~,, [S;I behaves roughly as n 1/2. For the 
present random walk we obtain different relations between gt(fl) and Z(fl) 
for different p(fl). Since the present random walk has an exponential term 
as a statistical weight, its scaling property has been changed (we suggest 
looking at the proof of Lemma 6.2 for more information on this). 

2. THE  M E A N  V A L U E  OF THE FREE E N E R G Y  

Let R , , = E l o g  Zt~ The main aim of this section is to discuss the 
asymptotic behavior of R,. It is easy to see that R,, satisfies asymptotically 
the subadditive property. Using this, we can easily show that the limit 
lim . . . .  (R,,/n) exists. We will derive a precise estimate for the partition 
function Z ~~ (see Corollary4.5 below). So we need to derive a more 
precise estimate for R,,/n (see Proposition 2.6 below). Let us first prove a 
lemma. 

Lemma 2.1. For any given fl:~0 there are constants e, t ie(0 ,  ~ )  
such that 

s! 

exp 

if lz/> 1 is even. 

The main idea of the following proof is basically from the proof of 
ref. 9, Lemma 1. Lemma2.1 will be used to prove that the limit 
lim . . . . .  (R,,/n) (if it exists) is positive. 
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Proof. Suppose n>~l is even. Let M=M(fl)>~I be a fixed (even) 
number, whose value will be specified below. To prove this lemma we will 
mainly consider the special path of this random walk: So=O, SM=O, 
SZM = 0 ..... S,,M = O. For  convenience we set 

) z"i-]'M'iM~=EexPo, o ~, b(i-l)M+jU(gj) IIsiM=ol 
j = l  

and 

- *ls.=ol exp fl biU(Si) 
i = 0  

Since U(So)=O. we have 

,~(O, nM)  ~ ,~1 I .nh / )  

=Ells,,M=ol exp f l i ~ j  bi 

~>Eexp biU(Si IIs,.=o I 
i = 1  i = l  

>1 f i  Z " i -  0,0 I)M. iM) (2.1} 
i = 1  

It is clear that Z r176 7(M'2M} 7((n--llM'nM) 0.0 , ~0.0 . . . . . .  0.0 are independent identically 
distributed random variables on (12 ,~ ,  P). We want to prove that 
ElogZr176 if M>~ 1 is large enough. For this purpose we first prove 
that there are Mo>~ 1 and O](fl)e(0,  co) such that 

Elog Z~o~ M ~n, M>~ M o (2.2) 

Here and in the proof  of Lemma 2.1 we always assume that M is even. By 
computation one can show that (see the proof  of Lemma 3.4 below} 

P ( S  l > 0  ..... S M _  I > O, S M m O  ) 

= P{ SI < 0  ..... SM-I <0 ,  SM=O) >10(1) M -7/2 

Thus, by the definition of U(Si) we have 

ZCo~ >>- E (exp ( f l j~,  bjU(Sj}) 

(Its, >o..... sM-, >o. s.=o~ + I~s, < o...., s,,,_ ~<o. SM=OI )) X 
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which implies that 

__ ~,o M~ _ l o g M +  [fl] I ~ b~ I k,~ Lo, ~ t > 0 ( 1 ) - 7  
i = l  

Hence, there are constants C, ~R ~ and C2e(O, ~ )  such that 

=M bi El~  ZI~ ~ - C i - 7 1 o g M + l f l l E  i~  
1 

>~ C~ - 71og M + C2 IflI M ~/2, M >~ I 

From this one can see that (2.2) is indeed true. Thus we can choose M 0/> 1 
such that 

log Z~o~ M~ >1 2, M >1 M o 

By (2.1) we know that 

i1 

logZ'~~ ~ l o g Z  "i-l~M'iu~ M > ~ M  o 0,0 
i= l  

and so 

E log 2c~ ~> 2n, M > ~ M  o 

By a large-deviation result we show that there is a constant C ( M ) e  (0, c~) 
such that 

i= l  

~< 0(1) exp( - C(M)n), Vn~> 1 

This proves that 

z ( ( i - - 1  )M, iM) 17 ~ /3 log~.~o.,,Mj<~ Elog o.o - j < ~ O ( 1 ) e x p ( - C ( M ) n )  
i = l  

which implies 

P(2~~ Vn>~ 1 

Using this one can easily prove the desired result. | 
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Let Px be the probability measure for the random walk {S,,},,~o 
started at x, and E,. be the corresponding expectation. We remark that 
P = Po and E = E o. The main result in this section is Proposition 2.6 below. 
To get this result we will mainly prove that R,, satisfies asymptotically a 
subadditive property (see, e.g., Lemma 2.3 below). To this end it suffices to 
prove that Eoexp(flY'.7=lbiU(Si)) and E,.exp(flY'.'/.=lbiU(Si)) have 
asymptotically the same behavior. Lemmas 2.2 and 2.3 will be devoted to 
proving the above assertion. 

I.emma 2.2. For any given t i C 0  and M~> 1 there are constants 
K >/1 and C3 s (0, m) such that 

<~ C 3m-M, Vx~Zl ,  V m )  l 

Before embarking on the rigorous proof of this lemma, let us make a 
few remarks. First, we need only prove the above estimate for x e Zt\{0}.  
We introduce a random variable 

r=inf{m>~0: S , ,=0}  ^ n 

Heuristically, we expect the asymptotic inequalities 

E,.exp p y '  biU(Si) ~<Eoexp p b,U(S~) 
i ~ l  " ,  i = 1  

E0exp fl biU(Si) ~<Eoexp biU(Si) , m<~n 
\ i = 1  1 

(by Lemma 2.1) 

to hold true, It is, on the other hand, not difficult to see that the lemma 
follows from these inequalities. 

We now give the rigorous proof of Lemma 2.2. 

Proof. By definition we know that Ix[ ~< v ~< 17. Thus, by the Markov 
property of {Si} we have 

E,.exp ( ,  ~ biU(Si) ) 
i ~ l  

= E,.I{~=/I exp biU(x) Eexp p ~ bi+/U(S~)) (2.4) 
j = I x l  1 i = I / 

Since bl ..... b/are i.i.d, and/~b~ = 0, by a large-deviation result we can show 
that for any given 6 E (0, 1) there is a constant C4 e(0, ~ )  such that 
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P biU(x)>~bj <~O(1)exp(-C4j) 
i 1 

On the other hand, by Lemma 2.1 we know that there are constants C5, 
C6 ~ (0, co ) such that 

i = l  

~< O( 1 ) exp( - C6j) 
i f j>~ l  is even. Hence, if j'~>l is even and ~e(O, 1) is chosen to be suf- 
ficiently small, 

/3 (exp (/1 ~.  b~U(x))>>'Eexp(fl~lb~U(Si))lls;=o, ) 

<~ P (exp (fl ~= b~U(x))>~exp(~j)) 

+P(Eexp(fls~= b~U(Si))IIs'~=o}<~exp(c~J) ) 

<~O(1)exp(-C4j)+ P(Eexp(fli~= biU(Si))<~O(1)exp(Csj) ) 
~< O( 1 ) exp( - Ca A C6j) 

Using the inequalities 

we show that 

) ( ,  ) P E.,.II~=j} exp fl b~U(x) Eexp fl ~ bi+./U(S~) 
j = / [ I o g  m ]  \ i = 1  i = l  

�9 H - -  j >1 ~ E,.l{~=j, Eexp(fl ~ b~U(Si))Eexp(fl ~" b~+./U(,~))) 
j = / [ I o g  m ]  \ i ~ l  

<~ Z P(E,.l,~=jlexp( , ~ b~U(x)) 
j = / [ l o g  m ]  i = 1 
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<~ O( l ) ~ exp( - -  C 4 /k C6j) 
j = I[  log  m ] 

~< O( 1 ) exp( - CTl log m) 

for some constant C 7 ~ ( 0 , ~ ) .  Hence, if 1>tl is large 
j~>/[ log m], 

1.h.s. of (2.5) ~< O(1 ) m -M 

We also remark that 

E.,.II~=jl ~ 1 
j = / [ l o g  m ]  

Using this, one can easily show that 

P E,.II~=j1 exp b~U(x) 
.= j = l  g i n ]  t I 

\ i = l  

581 

(2.5) 

enough and 

i = 1  

Moreover, by the Markov property of {S;} we have 

c -j ) Z'O'"'>>-Eexp fl ~ b i U ( S  i) Ils,=olEexp fl"~ bj+iU(Si) 
" i = l  " ,  i = 1  

and 

~< O(1)m -M (2.6) 

if/~> 1 is large enough. We now fix a constant l>~ 1 such that (2.6) holds. 
I f j  (~<l[logm]) is even, then there is a constant K~> 1 such that 

Eexp  (]3 ~ biU(.x))<<,O(1)m 'x-''/2 
i = l  
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Thus, by computation we get 

/ [  l o g  m ] 

E 
. i  = Ixl  

E,.II~=jI exp fl ~ b~U(x) Eexp fl ~ bs+jU(S~) 
\ i = 1  \ i = l  / 

~t,og,,,] (,,-j ) 
~<0(1) }-'. m'~-'V'-Eexp p Y' b~+jU(S~) 

j =  I-v[ i =  1 

0(1) 
/ [ l o g  m ]  

Z 
j =  Ixl  

{ "-J U(S;)) x Eexp \fl i~l bi+i 

0(1) 
/ [  l o g  m ] 

2 
j =  I-vl 

inK- J(log m)l/-'E exp b~U(S~) 
1 

~< O( 1 ) raKE exp b~ U(Si) 
1 

Combining this estimate with (2.4) and (2.6), we then obtain the desired 
result. | 

Lemma 2.3. For any given ~e(0, 1) there is a constant CsE(0, or) 
such that 

R, +,,, <<. C8 log 17 + R,, + R,, 

if 11 ~ ~< m ~< n. 

From Lemma 2.3 we can see that R, is not strictly subadditive. 
However, the estimate given in Lemma 2.3 is enough for proving the exist- 
ence of lim . . . . .  (R,,/n) Lemma2.3 is actually an immediate result of 
Lemma 2.2. 

Proof. Since IS,,I ~<n, we have 

) R,+,,,=Elog ~ Eexp fl biU(Si) I{s.=x} 
x ' =  - - n  - -  i =  I (n, ) 

xE,.exp B ~ b,+,U(S~) 
i = 1  
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By Lemma 2.2 we know that there is a constant Ko ~> 1 such that 

/~ max E.,.exp fl b,,+iU(Si) ~>nK~ b,,+iU(Si) 
\ - - n < ~ x < ~ n  i =  1 1 

( (~ ) ( )) ~< ~. P E ,  exp fl ~ biU(Si)~>nK~ fl ~ biU(S ,) 
x =  - - n  I i =  1 

~< O( 1 ) 17 - 4  

Thus, R,, +,,, is less than 

( ( ) ( )) Elog nK~ fl ~ biU(Si) Eexp  /3 y' b,,+ U(Si) 
i = 1  i = l  

+(E(logZ'~ 
\ l x l  ~<n i =  1 

I 1 

which is bounded from above by 

K o log 77 + R,, + R,,, + O( 1 ) fin. n - "  ~< C 9 log n + R,, + R,, 

for some constant C9 ~ (0, ~ ) .  This completes the proof of Lemma 2.3. I 

We now use Lemma2.3 to prove the existence of the limit 
l im . . . . .  (R,,/n). 

L e r n m a  2 . 4 .  
such that 

For any given f l ~ 0  there is a constant v(fl)~(O, co) 

lim n- lR, ,  = v(fl) 
n ~  

As mentioned before, R,, does not satisfy the (strict) subadditive 
property. So we cannot get the desired result immediately from Lemma 2.3. 
In the following we shall prove that for any given e ~ (0, 1) and sufficiently 
large m i> 1 

n-t(Cjologn+R,,)<~e+m-l(Clologm+Rm), n>~m 

which implies the existence of the limit lim .. . . . .  (R,,/n). 

F'roos Let ~t = lim inf,,+ ~(R,,/n). By Lemma 2.3 we can show that 
there is a constant Ctoe(0,  co) such that 

Cto log(n + m) + R,,+,, <~ C1o log n + R, + Clo log m + R,,, 
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if n~ <~ m <~ n. Let 

/~,, = C,o log n + R,, 

Thus, if n ~ ~< m ~< 17 and 17/> 1 is large enough,  

/~,,, +,, ~< ~,, +/~,,, (2.7) 

It is clear that/~ = lim inf, . . . .  (/~,,/n). Fo r  any given e ~ (0, 1) there is a suf- 
ficiently large m/> 1 such that  

Moreover ,  for any given n ~> m there are lo ..... lk E {0, 1 } and mo ~< m such 
that  lk = 1 and 

k 

n = m  ~ / i 2 ; + m o  
i = 0  

Let us set R(u) = R,, and /~ (u )  = /~ , .  F rom the p roof  of  Lemma 2.3 we can 
see that for any fixed L ~ [ 1, k]  

I k 
R , , < ~ O ( 1 ) l o g n + R  m 

i~k--L+ 1 

Since Ibil, IU(x)l ~ I, we have 

1i2 i + R m Z Ii 2i +mo 
X i=l / 

R,, <~ IPl ,7 

We choose a sufficiently large constant  L ~> 1 such that (for L ~<k) 

By (2.9) we have 

k--L k 
li2 ..~e Y'. 1i2 ~ 

i=l i = 1  

I k--L I n - I R  m ~ l i2 i+mo <~e Jill 
i = 1  

Clearly, we can choose 0c ~ (0, 1) and k/> L such that  m~'<~ m/2 and 

2k--L+ I m/> (2kin) ~ 

By (2.7) we have 

i k m Y, 
i=k--L+l 

k 

1,2i <~ ~, l ,R(2'm) 
i=k--L+l 

(2.8) 

(2.9) 

(2.10) 
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and 

R(2 m) ..~ 2 R,,  

Therefore, 

) k m E li 2i <~ 
i=k--L+l i=k--L+l 

l 2 R,,  

From this we obtain that 

R(m k l i2 , )<Zk=k_L+l l~2 ,~ , , ,  ~ . ,  ~.i=k--L+l 
"~- ,--,k 1 2 i < ~ -  n 2.di=0 i m m 

By (2.8) and (2.10) we know that 

R, ,~ O(1) l~  n + e  Ifll + - -  
n n m 

Since e ~ (0, 1 ) is arbitrary, we have actually obtained that 

lim sup ii-l/~,, ~< lim infm-t/~,,,  

which proves that the limit lim . . . . .  (/~,/n) exists. Hence, lim . . . .  (R,,/n) 
exists. By Lemma 2.1 we know for some constant 6 e (0, oo) that 

R,, i> On, Vn/> 1 

Thus, we know by (2.9) that lim . . . . .  n - IR , ,  ~ (0, ~ ) .  II 

To get a more precise estimate for R, ,  we first prove a lemma. 

L e m m a  2.5. For  any given fl ~ 0  there is a constant Clj e (0, ~ )  
such that 

i)(]~)- Rn ~ Cll logn,  Vn~>2 
n n 

Proof. By (2.7) we know that if m 1> 1 is large enough, 

R2nt Rnl 
2m ~ m (2.11) 
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For any given n >~m there is a constant k ( n ) 1 >  1 such that 

v ( f l )  /~(2kt"ln) 1 
2ktn)n <~ -n 

Thus, by (2.11) we have 

v(fl) ---R" ~ /~(2kl"~n)7 /~" + 1 
n z " " ' n  n 77 

~<y,k'"'(/~(2~n) /~(2/-'n)'~ 1 1 
i--I ~ 2ill 2"-~i; j-Jr H ~-1l 

which implies, by the relation between R,, and /~,,, that 

v(fl) - R'-2, ~< O( 1 ) log 7_____j7 
17 17 

if n I> 1 is large enough. This completes the proof. | 

Having these preparations, we can easily prove the main result in this 
section. 

Proposition 2.6. For any given flq:O there is a constant 
C~2 e(O, ~ such that 

I v ( f l ) - n - ' R , , [  ~ C1217 -1 logn, Vn~>2 

Proposition 2.6 is much more precise than Lemma 2.4. By means of 
Proposition 2.6 one can give a precise estimate on the partition function 
Zm'"( It seems possible that the bound n-1 log 17 given in Proposition 2.6 
can be replaced by 17-1. 

P r o o f .  By Lemma 2.5 we need only to show 

v( f l )  _ R , ,  >~ - -  C l ~ log ,7 
11 tl 

Vn >/2 

Let 

R,, = ~ log 2 c~ 

By a similar argument as in the proof of Lemma 2.5, we can show that 
there is a constant ~(fl)e (0, ~ )  such that ~(fl)= lim . . . .  (/~./n) and 

_ c , ,  1 
1I 1l 
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for some constant C~3~(0, or). Thus, it suffices to prove 

IR,, - R . I  log n 
~< 0 ( 1 ) - - ,  u (2.12) 

n n 

By a similar argument as in the proof of Lemma 2.2, we can show that for 
any given M t> 1 there is a constant Kt> 1 such that 

~<O(1)n -M, V x ~ Z  1 (2.13) 

Thus, there is a constant K o >/1 such that 

i = 1  

~< O( 1 ) n -2, u 1 

Using this, we can show that 

R,, ~< Elog((n  r~ + 1) 2 I~ + O(1) n - '  

~</~,, + O(1) log n 

It is clear that /~,,~<R,. Thus, we obtain the desired estimate (2.12). The 
proof of Proposition 2.6 is then complete. II 

R e m a r k .  It would be very interesting to give an expression for the 
exponent v(f l)  in terms of ft. In fact, one can easily show that 
limlpl . . . .  v(/?)/I/~l = 1, and v(fl)<~fl '-/2 if I/~1 > 0 is sufficiently small. 

3. A REASONABLE BOUND FOR THE VARIANCE 

By a similar argument as for Rn given in Section 2 we can also show 
that the limit lim . . . .  n - 1 V a r ( l o g Z  t~ exists (see, e.g., the proof of 
Lemma 4.1 berow). However, we need to show that this limit is finite and 
positive. To this end, in this section we first derive a reasonable bound for 
the variance of the free energy [i.e., Var(log Zt~ The main result in this 
section is as follows. 

Proposition 3.1. Let fl:/:0; then there is a constant C ~ ( 0 ,  1] 
such that 

-7(0 n) C,n~<Var( log~ " )~<Ci-ln, Vn>~2 

822~83, 3-4-20 
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Wehr and Aizenman ~ ~ already derived a reasonable bound for the 
variance of an extensive quantity (ref. 11, Definition 2.1 ). They also proved 
that the free energies of some disordered systems are indeed extensive 
quantities in their sense. Unfortunately, we were not able to find a random 
variable BA for the system discussed in the present paper such that the con- 
ditions (2.2) and (2.4) in ref. 11 are satisfied. In other words, we were not 
able to prove in this way that the free energy log Z ~~ is an extensive 
quantity in the sense of ref. 11 Definition 2.1. The main result in ref. 11 (i.e., 
Theorem 2.3) thus cannot be used directly to prove Proposition 3.1 above 
(or Lemma4.1 below), but some ideas given in the proof of ref. 11, 
Theorem 2.3, can be borrowed to prove Proposition 3.1 above�9 

For convenience, we set l , ,=[n/M],  where M>_,I is large enough. 
Without loss of generality we may assume 1,,= n/M. We introduce some 
notations, which correspond to those of ref. 11: 

/W 

~di~--" E b j U ( S j ) ,  i = 1 . . . . .  I n 
j = l i - I ) M + l  

~., ,=a{bli_l~m+ l . . . . .  biM } , i = 1  ..... l,, 

and 

"~#i.n = O" 0 
1 < ~ j < ~ l n , j ~ i  

{ b, j_ ,  ,M+, ..... bin} ) 

Let 

Yi ,, = E(log Zc~149 ' I �9 - -  i , - - ~ , n s  

and 

Zi.,,(b(i_l~M+l ..... b iM)=E( logZ /~..,, 

Then 

( ) Z~.,,(t, ..... t M ) = ~ ' l o g E e x p  ~ ~ ~ j+f l  ~. t jU(Sj+._ , ,M 
[ < ~ j ~ l n . j v ~ i  j =  1 

For convenience, the random variable Zi.,,(b._ ID'~I+I ..... biM) is sometimes 
briefly denoted by Z,.,,. Let {a,,},,>., and {al,},,>., be independent with 
respect to a probability measure P' and have the same distribution as 
{b,,},,~>t with respect to P. Then we can show that 
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] I I t 2 
V a r ( Z i . , , )  =-~ E (Zi.,,(a~i_ I ~ M +  1 ..... aiM) --Zi,,,(ali-IIM+ 1 ..... aiM)) 

ex iM U(Sj)),~2 =1- E '  /~log E P ( f l ~ - - - ~ l < ~ j < ~ l , , , J r  
ex iM t 2 E p( f lZ l<~j<l , , . j# i~bj+f lZj=, i_ l lM+,a)  U(gj))J  

(3.1) 

where E'  is the expectation with respect to P'. Let us first prove a lemma. 

I . e m m a  3.2. We have the following relation: 

6, i,, 
Var(Z~.,,) <<. Var(log Z m'''~) <~ ~ Var(Y~.,) 

i = 1  i = 1  

Proof. We only give a sketch of the proof (for more details, the 
reader is referred to the proof of ref. 11, Proposition 3.1 ). Define the map 

Oi by 

Qi log zm."~ = E(log Z~~ 

Let 

 =l-I a,, 

Then one can show that 

Z i .  n 

i 

~ = I  
j=l 

I-I Qi log Z I~ 
1 <~j<~ln j ~ i  

and 

E ( ~  log Z '~ - .~_ t log Z~~ log Z ~~ - ~ _  ~ log Z c~ = 0, 

Using these results, we obtain that 

.Var( Zi.,,) = E Qj( I -  Qi) log z I~ 
I ~ J ~ l n  J # t  

and 

& 
Var(log Z I~ = ~ E ( ( ~ _  t - ~ )  log Z~~ 2 

i = l  

t,, 
--- 2 E(-~i-1( I -  Qi) log Z~~ 2 

i = 1  

i ~ j  
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Using the H61der inequality for conditional expectations, we have 

[-[ Qj( I -  Qj) log z ~~ 
< ~ j ~ l n , j ~ i  

< F, 1~ Q:(I- Qi) log Z '~ "- 
1 <~j<<.ln-- l , j=#  i 

< E, I~-1(1- Q,) log Z~~ 2 

Therefore 

/n 

Y'. Var(Zi.,,) ~< Var(log Z ~~ 
i=l 

which proves the lower bound. By a similar argument we can prove the 
upper bound. 1 

In Lemma 3.2 we may choose l,,=[M-~n]. It is easy to show that 
{Var( Yo,)} is bounded (see the proof of Proposition 3.1 below). Thus we 
can easily get the upper bound asserted in Proposition 3.1 from Lemma 3.2. 
To get the lower bound from Lemma 3.2, we have to prove that Var(Zi.,,) 
has a uniform lower bound. For this purpose we let { t,,},,~ and { t',,},,>_. I 
be two special sequences: 

t k = 1, t'_,k- 1 = - 1, t'_,n = 1, Vk >i 1 

Let us first prove two lemmas. 

I . e m m a  3.3. For any given f l r  0 the following holds for any x e Z~: 

E,.exp (fl ~ tjU(Sj))~O(l)exp(lfllM/2) 
j = l  

Proof. Let a l=inf{j~> 1 : S i = 0  } and a2=sup{j<~M:  Sj=0}.  Since 
]Y'.~'= ~ tjI ~< 1, Vu >~ 1, by the definitions of at and a_, we have 

E-,exp (flj~=l t~u(si) ) 

= E,.II~ ~ ' 
j ~ r l  + 1 

xexp fl 6U(x)+fl ~. tjU(y) +exp fl t~U(x) 
' j = l  j = c r 2 +  1 X j = l  

~<ea+e -'1' max Eexp (fl ~ tjU(Sj,) lls,=o, 
I<~i~]l,[ \ j = l  
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Ifi<~M/2, then [since tjU(Sj)<~ 1] 

E exp ( flj~= t~ U( Sj) ) <~ exp( lfll M/2 ) 

L i If Li >~ i/2, then we We now assume M >>. i >1 M/2 and set ; =  Z j= ~ Ilsj=01. 
also have 

E exp ( flj~= 1 t~ U( Sj) ) <~ E exp( lfll i/2 ) <~ exp( lfl[ M/2 ) 

Now suppose Li <~ i/2 and set 

{s(l) ..... s(L;)} = {j<~i: Sj=O}, s(O) = 0  

It is clear that 

U(Sj)=U(Ss.,~+I), j e [ s ( v ) + l , s ( v + l ) - l ]  
By the definition of {t)}j~>~ we know that 

j=.,~+"~'+ll I t)'U(S s) 41 

Thus 

: I I t~u(sj) = E E t~tslsj) 
j 1 v=l j=s(v--l)+l 

<~ ELi s,,'),~_ ljU(Sj)' 
t ' = l  j~s* l ) + l  

In all cases we have 

 exp( • 
j=! 

which proves the desired result. 

<~ Li <~ M/2 

t) U( Sj) ) ~< exp(lfl[ M/2 ) 

! 

I . e m m a  3.4. For  any given fl # 0  the following holds: 

Exexp (flj~=, ljU(Sj)) IlsM=yl 

/> O(1) M -7/2 exp(IPl ( M - 2  Ixl - 2  lYl)) 2-t-'t- ~J,u 

if Ixl + lyl ~< M and the left-hand side of (3.2) is positive. 

(3.2) 
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By (3.2) we known that if Ix[ + [Yl is less than eM with e~ (0 ,  1/16), 
then the left-hand side (l.h.s.) of (3.2) is bigger than exp(3 IPl M/4). The  
idea to prove (3.2) is also simple. To  get a lower bound  for the l.h.s, of  
(3.2), we only need to consider some special path of the random walk { S~} 
(e.g., the path {Sl=x--U(x)  ..... Slxl_l=U(x), SI.,.I=0; SM_I , , I=0  ..... 
SM_~=y-U(y) ,  S M =  y}).  

Proof. We assume that  the 1.h.s. of  (3.2) is positive. Without  loss of  
generality we may assume fl > 0 and x, y 4: 0. It is easy to see from the 
Markov  proper ty  of {S~} that 

Exexp  p ~ tjU(Sj) Iis,,=,. I 
j = |  

>~E,. exp tjU(Sj)+# ~ tjU(x)+fl ~ tjU(y) 
\ j = l x l +  1 j = l  j ~ M - l y I + I  

X I {  S t  = x - ULx'L.. . ,  S ix  I - t ~ U{x)  Six I = O; S M -  [.rL ~ 0, . . . ,  SM - I ~ y -- U y) .  SM = v} 1 

>~2-1~l-b'le-/~lxl-el:'lEexp P ~ tj+I.,-IU(Sj) IIs,,,_~.,,_,.,.,=o~ 
j ~ l  

(3.3) 

Let r := inf{ i~>  1: Si=,s } and ?k=inf{m~> 1: IS,,I ~ k } .  Both r_ and ~'k are 
stopping times. It is easy to show that 

Pl(~t,,:/~3 < r0)/> O( 1 ) m -3/4 

By the symmetry proper ty  of  {S;} we have 

P(S 1 > 0  ..... Sin>O) 

= ~ P ( S I > 0  ..... S.,_l>O,S.,=x) 
.,.=, 

>~P(S~>O ..... S . , > 0 ,  max Si<~m 3:) 

1 ~PI(Y[.,,,3/4] < Z'o) 

/> O( 1 ) In -3 /4  

This proves that there is x 0 e [ 1, m]  such that 

P(SI > 0 ..... S.,  _ l > 0, S,. = Xo)/> O( 1 ) m - i - 3/4 
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By the Markov property of  {S;} we can show that 

P(SL > 0  ... . .  $2.,_, > 0 .  $ 2 . ,  = 0 )  

= ~ P(S~>O,...,S,,=x,S,,,+I>O,...,S2,,=O) 
.x-=l 

= ~ P(S l > 0  ..... S,,,=x) P(SI > -x, . . . ,  S,,_j > - x ,  S,,= - x )  
.,=1 

= ~ P2(S~>O ..... S .... j > 0 ,  S , , ,=x)  

>~PZ(S t > 0  ..... S . . . .  l > 0 ,  S,,, = x0 )  

>/O( 1 ) m - 7/2 

By (3.3} we know that 

E., exp(f l  tju(sj))l,s,,,=,. I 

~> 2 - I x l -  I:,1 e - p  I-,-I-p I.,,I e x p ( f l ( M - 1 3 ' 1 -  } x l -  1} 

x P(S~ > 0 ..... SM_ t.,'~- t-,l - ~ > 0, Sat_ j,,~ _ I.,1 = O) 
~> O( 1) (M--  )y) - - } x ) ) - 7 / 2 2  -Ixl  -I-vl e / / I M - 2  Ix l -2  lY1-11 

which proves the desired result. | 

Let 

~b~(i} = E e x p  [3 ~ ~bj+[3 ~ tjU(Sj) 
I ~ . t ' ~ l n , j ~ i  j = { i - -  I ) M +  l 

and 

(, ) q~2(i) = E e x p  ~. Oj+fl ~" t~.U(Sfl 
I ~ j < ~ l n . j ~ i  j = ( i  I I M + I  

L o m m a  3.5. For  any given fl # 0 there are constants 61,62 e (0, oo) 
such that 

P(qJt(i)~exp(d~M)q~,_(i))<~O(1)exp(-d2M), Vn>~l, VM>~I 

Before proving Lemma 3.5, let us remark that from Lemmas 3.3 and 
3.4 we can expect that the inequality 

j = l  \ k = l  
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holds, which is heuristically at least compatible with the conclusion of 
Lemma 3.5. However, the rigorous proof of Lemma 3.5 still involves some 
more complicated computations, as we shall now see. 

Proof. Since S ,_II  M, S~MeZ', by the Markov property we know 
that 

Cz(i)= ~ Eexp ~; Iis,,_,,M=,. I 
x ,  y E Z I l 

y l 

x E,, exp p j~l bj +,-M 

We remark that there are constants 63, 64 > 0 such that (see the proof of 
Lemma 2.2) 

' (exp (fl ~ b~U(x)) exp(63J) >l Eexp (fl Z= b,U(SA) IIsj=ol ) 

~< O( 1 ) exp( --64j ) 

ifj~> 1 is even. Thus, as in the derivation of (2.5), we can show that there 
are constants 6s, 66 e (0, oo) such that 

P(AAx)) <~ 0(1) exp( -66  Ixl) 

P(BAy)) ~< O(1)exp(-06 [y[) 

if ( i -  1 )M is even, where 

>~exp(-d5 Ix]) Eexp flj~ ~; Iis._,,.=ol 

BAy)=)E,.expkfl ~. b;.,MU(S;); 
"- \ j = l  / 

~>exp(-6s lyl)Eexp f l  i__~ 1 bj§ 
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Therefore, there is 57 e (0, m) such that 

-P( U Ai(x)u B~(Y)) <~ O(1)exp(-(~veM), 
Ixl, lyl ) ~ M  

If the following event has occurred 

Vet(O, 1) 

N A ~'(x) c~ B~(y) 
Ixl >~EM, lYl ~>~M 

by Lemma 3.3 it follows that 

(, ,)  ~._(i)~<0(1) ~ Eexp fl ~ ~kj IIs._],M=.,. I 
Ixl, lyl ~<eM j =  ] 

xexp(I/~l M/2) Ey fl ~" bj+,MU(Sj)j 
j = l  

+0(1) ~ Eexp Oj IIs._,,M=.} 
x ~ Z  1, lyl ~>eM 1 

xexp(I/~l M/2)exp(-~s lYl)Eexp p j_~ bj+;M 

+0(1) ~ Eexp Oj Iis,,_,)M=ol 
Ixl >~eM, lyl  <~cM 1 

x exp(-Ss Ixl) exp(I/~l M/2)E,, exp p j~l bj+iM 

~O(1)exp(I/~l M/2)Eexp Oj I{is,,_,,ul~l 
1 

(p,,-,M 
E:, jZ=, b~+,MU(Sj)/ e x p  \ • Z 

lyl ~<eM 

By Lemma 3.4 we 
Ixl, lyl ~<~M, then 

know that if ee(0, I1~1) is 

(3.4) 

sufficiently small and 

Ex exp (flj~] tjU(Sj))I{sM=_,,l>~O(1)exp(3 [ill 31/4) 

Hence, if the event (3.4) has occurred, by the Markov property of {S,.} 
we get 
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~l(i) >~ ~. Eexp ~j l{s,,_,,M=,. I 
Ixl, lyl ~<eM 1 

(._,M 
xE,,exp fl ~. bj+,mU(Sj)] 

j = l  / 

>~ O( 1 )E exp ~bj 11 IS._,MI -<~MI 
1 

xexp(3 fill M/4) 2 E,,exp p j~, bj+,M 

/> O(1) exp(IPl M/4) ~2(i) 

Using this, we prove that there is a constant C_, e (0, oo) such that 

/3(~(i) ~< C,_ exp( IPl M/4) ~2(i)) 

<~'(,xi.o,U>~M Ai(x)wBi(y)) 

~< O(1) exp( -  J7eM) 

which implies the desired result. | 

By Lemma 3.5 we then know that Vat(Z;.,) has a uniform lower 
bound. We are now in a position to complete the proof of Proposition 3.1. 

Proof  o f  Proposit ion 3.1. Let 

q~(i) = (E log qb,(i)/q~2(i)) 2 

By definition we know that 

IO,( i )/r i )l <. ( E log exp( 2 f lM)  ) 2 = (2 t im )  2 

By H61der's inequality and Lemma 3.5 we have 

(EII,,I;I .< expt~,Mi,_.~;)l log $l(i)/$2(i)) 2 ~< O( 1 ) exp(-&_M/4) 

which implies the following, provided M >1 1 is large enough: 

q~(i)/> - C3 exp(-J2M/4) 

+ 5_EEl{r162 log(q~l(i)/~2(i))]- 
>/O(1)M-- C3 exp(-&_M/4) >1 C4 
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for some constants C3, C4 ~ (0, O0). By (3.1) and Lemma 3.2 we know that 
if M >/1 is large enough 

/.  

Var(log Z m''~ >/ Y', Var(Z~.,,) 
i = l  

/. 

>~ �89 ~ E'II,,j=,,.o;=,~.,,_,~M+,~_j<.,M I (~(i) 
i = l  

>~�89 - ~  Y" ~b(i)~>O(1)n 
i = 1  

which proves the lower bound. 
Now it remains to show (by Lemma 3.2) 

Var(Y~.,,)<~O(1), i=1  ..... l,, (3.5) 

Without loss of generality, we may prove (3.5) only for i = 1. By the defini- 
tion of Yr.,, we have 

Yl.,,=E'logEexp(fl ~. a~U(Sj)+fl ~. biU(Si)) 
\ i = 1  i = M + l  

In this case we have 

i = M + l  

i = l  i ~ M + l  

~<exp(lfllM)Eexp(fl ~ biU(&)) 
- -  i = M + I  

for any given ul ..... u M e { - 1 ,  1}. Hence, 

which implies 

[YL,,-- logEexp(f l  ~ biU(Si)) <~[fllM 
i ~ M + l  

This then completes the proof of (3.5). 

EIEY, . , , -  Y,.,,I; ~ 0 (1) l f l l2M 2 

! 
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4. CENTRAL LIMIT THEOREM 

The main aim of this section is to prove that the central limit theorem 
holds for the free energy (see Theorem4.4  below). To get this limit 
theorem, we will first derive a reasonable estimate on the fourth moment  
of the free energy, and then prove that the fi'ee energy can be expressed 
asymptotically as the sum of some independent identically distributed 
random variables. Using the estimate on the fourth moment  of the free 
energy, we can show that the Lindeberg condition is fulfilled for this 
system, and then get the central limit theorem. To this end, let us first 
prove two lemmas. Lemma 4.1 below concerns the behavior of the variance 
of the free energy. Proposition 3.1 given before will be used in the proof  of 
Lemma 4.1. Lemma 4.2 below will be used to verify that the Lindeberg con- 
dition is satisfied for this system. 

L e m m a  4.1. For  any given f l ~ O  there is a constant y(fl)e(O, or) 
such that 

lim Var(log Z I~ = 7(fl) 

where Var(log Z I~ = L'(log Z I~ - E log Z*~ 2. 
The main idea to prove this lemma is the same as the one given in the 

proof  of Lemma2.4,  where lim ... . . .  (R,,/n) has been proven to exist. We 
will prove that Var(log Z I~ has asymptotically a subadditive property, 
which implies the desired conclusion. 

Proof. Let 

~,, = log Z ~~ LTlog Z I~ 

and r,, = E~,. For any given ~ e (0, 1) we let m satisfy n~< m ~< n. From the 
proof  of Lemma 2.3 we see that there is a constant Ko i> 1 such that 

i = 1  

In other words, we have 

~<O(1)n -4 (4.1) 
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By (2.13) we know that  there is a constant  Kt e (0 ,  oo) such that  

II 

where 2 I~ was defined at the beginning of  Section 2. Using this, we 
show that  

/~" log Z I~ ~< L" log((n K' + 1 ) 2 r176 

ii  

~< O( 1 ) log I1 + ~; log 2 I~ 

which implies 

P-. log Z'~ E log  2~~ + F-. log E exp (f l  ~. b ,+iU(S i ) )  
i = 1  

/> --  Cl log 1l + / ~  log Z ~~ + E log  Z I~ 

for some constant  C~ ~ (0, ~ ) .  Let 

~,,(n) = log E exp b,,+iU(Si) - E l o g  E e x p  bb+sU(Si) 
i I i [ 

By (4.1) we have 

P(~,, + ,,, >1 K o log 1l + C i log 17 + ~.,, + ~',,,(11)) ~< O( 1 ) n -4 

Similarly, we prove  that  

/3(~,, +,,, ~< --K~ log n -- C'l log n + ~,, + ~',,,(n)) ~< 0(1)  n -4 

for some constants  K~, C'~E(0, ~ ) .  It is clear that  ~,,<~lflln and 
E~,, = E~i,,(n)= 0. Since ~,, and ~i,,(n) are independent ,  we get 

E~?, <<. O( l ' ) ( logn)Z+O(1) logn(~[~, , [  - ' +,, + E(~,,,(n))- + E I ~ , , , ( n ) I ) + E ~ ; ,  ~ ' 

By Proposi t ion  3.1 we know that  

E~ ;, + . . . .  O( 1 ) n 1/2 log n + E~;, + E(~.,( n))-  

Thus there is a constant  C_. E(0, co) such that  

rn+ m < C2n 1/2 log n + r. + r,,, (4.2) 
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We now use the approach  given in the p roof  of  Lemma 2.4 to prove 
that the following limit exists: 

lim r'-2 = y(fl)  (4.3) 
n ~ ,.r_ H 

Let 

~,, = C2n 1/2 log n + r,, 

One can easily show that  for any given d ~ (0, 1) there is a large constant  
m 0 >/1 such that 

(/l "1-1'/7 ) 1/2 10 g (1'/ + m ) ~< n 1/2 1 og n + m l/2 log m 

if n ~ v m o ~< m ~< n and m >/m 0. Using this, we get 

/:,, +,,, ~</:,, + ~,,, 

if n 6 v  m0~<m~<n. Thus, by a similar a rgument  as in the p roof  of  
Lemma 2.4 we show that (4.3) is indeed true. By Proposi t ion  3.1 we know 
that y(fl) is finite and positive. I 

As ment ioned before, we will prove that  the Lindeberg condi t ion is 
fulfilled for the present system. To do so, we first derive a reasonable 
estimate on the fourth momen t  of  the free energy. 

L e m m a  4.2.  There is a constant  C5~(0,  co) such that 

/7(log Z ~~ - / 7  log Z(~ 4 ~ C51l 2 (4.4) 

It is not  easy to give a direct estimate for the fourth momen t  of  the 
centered free energy. The proof  of  Lemma 4.2 given below will be divided 
into two steps. First we will prove that the desired estimate holds for 
i '/= 2"'. Fo r  this purpose we set 

~,,, = 2 --'"'/7(log Z ~~ - / 7  log Zl~ 4 

We will derive an estimate of  o~,,, in terms of  e .... , and then use this 
estimate to prove the boundedness  of  the sequence {or,,,}. Second we shall 
give an estimate for the fourth momen t  of  the centered free energy in terms 
of  the sequence {e,,,}. To do so we need some further considerations. 

Proof .  F r o m  the argument  given before we see that  there is a 
constant  C6 ~ [ l, co ) such that  

2/7 log Z ~~ ~ - C 6 lm ~</7 log Z c~ ~< C 6 m  + 2/7 log Z t~ ~ 
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and 

' (log Z~~ <~ log Zt~ + log E exp (fl iT '  bi+ 2,,,-, U( Si) ) -  C6'm ) 

9 m -  I 

+ p logZ~~ I~ 
\ / = 1  - / 

~< O(1) 2 -4' ' 

Let 

")m - I 

'# . . . .  ,= logZl~  bi+2.,_lU(Si))-2ElogZ (~ 
i ~ 1  

Then we show that 

E(log Z ~~ - E log Z~~ 4 

~<O(1)+~7(111 .... 11 + O ( 1 ) m )  4 

4 

~ E I ~  .... 114+O(1/  Y m'/ : l , l  .... ,I 4 - i  
i = 1  

4 

<~ P. hi.,-114 + O(1) Y' mi(L " I17.,_ 114) (4-i)/4 (4.5) 
i = l  

Since log Z (~ and log Eexp(flZ~"-l~bi+2.,-,U(Si)) are independent 
and have the same distribution, we have 

II1.,_ II 4 ~< 2E" Ilog Z (~ E log Z (~ 4 

+ 0(1)(~ Ilog Z~~ Zl~ 2) 2 

<~ 2221.,- t~ .... i + O( 1 ) 2 21 .... i i 

Hence, by (4.5) we can show that there are constants c~(0, 1/2), mo~> 1, 
and C7 ~ (0, oo.) such that 

~ . , ~ ( l + e ) ( X  . . . .  I + C 7 ,  V#'# ' /~nl  0 

By this we know that for some constant Cse(0,  c~) 

~,,, ~< C8, Vm/> 1 

In other words, (4.4) holds for n = 2"', Vm/> 1. 
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We now prove that (4.4) holds for all n >  1. As in the p roo f  of 
Lemma 2.4, we show that for any n >f 1 there are 10 ..... I k e { 0, 1 } such that  
/ k = 1 and 

k 

n = Y, li2 i 
i = O  

Let u=max{i<~k-l:  l ; = 1 }  
n = 2 k + m,,. If u <~ k/2, then 

E(log Z m''~ - s log Z~~ 4 

O( 

+ 

~< O( 

~< O( 

~< O( 

- ~ P "  1 9i It is clear that  and m u  - -  z . . , i = o  i ~  . 

O( 1 )(log n) 4 + O( 1 )/~'(log Zm'"'"l) 4 

1 ) E'(log Z 1~ /~ log Z~~ 4 + O( 1 )((log n) 4 + m,']) 

1 )(2 z~ + (log n) 4 + 2 2k) 

1) n z 

Hence, (4.4) holds in this case. 
We now assume u>~k/2 and prove the desired result [i.e. (4.4)] by 

induction on k. Clearly, 

17 z/4 <~ mu ~< n 

if n >i I is large enough. Let 

( l (n)  = log Z m''''~ - E log Z m'''''~ 

~2(n)=logEexp(B~ b,+,,,U(Si))-P, l o g E e x p ( l ~ b i +  ..... U(S,)) 
i = l  i = l  

As an induction assumption,  we may assume that  

If t  (li')[ 4 - ~ K .  2 2u 

for some constant  K >~ 1 whose value will be specified below. By a similar 
argument  as in the derivation of (4.5) we can show that 

/~ Ilog Z I~ - E log Zl~ 4 

4 
<~El~l(lt)+~_(ll)[4+O(1) ~ (lognJi(g[~l(il)+ff~(n)[4) ~4-n/4 (4.6) 

i = l  
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If/~ I(](n)14 ~< M/~ l(2(n)l 4 for some M>~ 1, then 

l.h.s, of (4.6) ~< 0(1) ~" 1(2(n)14 ~< O(1) n 2 

We now assume /~ [(I(n)I4~>ME 1(2(17)14, where M>~I will be specified 
below. Then 

[~l(n) 4- ff2(n)[ 4 = ~" [~l(n)[ 4 4- E [(~2(n)[ 4 + 6/~ IC~(n)l 2 ~ 1r 

..< (1 4- 1 4- 6M'/2)  j~" ](',(n)[ 4 

Therefore, for any given e E (0, 1 ) there is Mo/> 1 such that 

l.h.s, of(4.6) ~< (1 +e)L" ]~l(n)[ 4 

if n >/1 is large enough and E [ffl(n)[ 4 >/MoE [ff2(n)[ 4. Using this, we can 
show that there is a constant C9 ~ (0, oo) such that 1.h.s. of (4.6) is less than 

( 1 + e)E ]r 4 + C9/'/2 ~ ( 1 + e)K-22" + C9 n2 

~< �89 2 ~ + 4C922k 

By letting K =  8C9 we then obtain that 

/~ |log Z ~~ +"''1 - / ~ l o g  Zl~ 4 <~K. 22k 

which proves the desired result. | 

As a corollary to Lemma 4.2 we get a strong law of large numbers for 
log Z ~~ 

C o r o l l a r y  4.3. The following strong law of large numbers holds: 

lim log Z ~~ I a.e.-/~ 
. . . .  v ( f l ) n  

Proof. By Lemma4.2 we know that 

/~ l~176 1 4~<O(1)n-2 
L" log Z ~~ 

By the Borel-Cantelli lemma we see that 

lim log  _Z ~~ 1 = 0 a.e.-P 
. . . . .  E" log z~O.,,~ 

Thus, we get the desired result from Proposition 2.6. | 

822/83/3-4-21 
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Having Lemmas 4.1 and 4.2, we can now prove the central limit 
theorem for the free energy. 

T h e o r e m  4.4. For  any given fl # 0 we have the following results: 

log Z ~~ - v( f l )n  
~(~)1/21,11] 2 ) N(0, 1), n --', oo 

log 2 t~ - 2v(]~)n 
),(fl)~/2(2n)l/2 , N(0, 1), n -o  oo 

where ~ represents the weak convergence, N(0, 1) is a random variable 
with the standard normal distribution, and v(/~) and y(fl) were determined 
respectively in Lemmas 2.4 and 4.1. 

Proof .  Let % �9 (1/2, 1 ). Without loss of generality, we may assume 
n "~ = [n ~~ is even, and n = u,,n ~~ for some integer u,, >1 1. Let 

/ , , ,o  i~ , , ,o+jU(Sj ) )_~logZiO. , ,~o  I O i = E exp  ~ flj~= l b , i -  

Clearly, 0~,..., 0,,,, are i.i.d, and u,,= O(n I -~'"). By Lemma 4.1 we know that 

EO~=~,(f l)  n~~ + o ( 1 ) ) ,  n - - - , ~  

and so 

V a r ( ~  O i ) = y ( f l ) n ( l  + o ( 1 ) )  , n----~ ct3 

By Lemma 4.2 we know that the following holds for any given e �9 (0, 1): 

1 "" 1 1 .... 

i = 1  i = 1  

/In 

~< O( 1 ) 17-2 y '  n2~o 
i = l  

~< O(1) u,, I 

which goes to zero as n-o  co (the above property is called Lindeberg's 
condition). Hence, the following central limit theorem holds (see the proof 
of ref. 7, Theorem 4.5): 

, N ( 0 ,  1), II--* oo 
Var'/-'(Z~"=, Oi) 
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Let 

v ~i log 7(ti-I~n~~ in=~ ~-"" 7{(i--l)naO'ina~ 
= ~ o . o  " - - / ~  lOg ~ o , o  

By (2.13) we have 

and so 

E IOi- O,I- ~ O( 1)(log n) 2 
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where 

Then we have 

Therefore, 

Using this, we get 

log Z m''~ - ~ log Z I~ 
(y(fl)n) t/2 

O~=max E,.exp (fl ~ bli-l~,,~+jU(Sj)) 
"x" ~ z l  " j =  I 

By definition we know that  

lilt ttn 
I ~  7 (  (i-- I )naO,in~O) Z(O,n) t ~o,o <<- <~ I-I oi 

i = 1  i = l  

k" log Z m''a- ~ Oi 2 ~< O( 1 )(log n)2u~, log Z m'') -- i -  I 

2 

log )'. Oi "E Z I~ -- E log Z m'"~ - 
i = 1  

~< O( 1 )(log n) 2 u~, ~< O( 1 ) n 2~' - = ~  i , )  2 

, N ( 0 , 1 ) ,  n--+oo 

I~ 03 2 (Oi-- ~< O(1 )(log n)2u~, 
i = l  

As in the p roo f  of  L e m m a  2.2 we can also show that  there is a constant  
K2 >~ 1 such that  

P(O~ K. .,-,i,,~ n -4  ~ n  -Zo, o )~<O(I )  
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By Proposition 2.6 we know that 

[E log Z ~~ - v(fl)nl ~< O( 1 ) log n 

From this we easily get 

log Z I~ v(fl)n 
~,(fl)l/2nm - , N(0, 1), n--, ov 

Similarly, we can get the other weak convergence asserted in this theorem, 
and the proof of Theorem 4.4 is then complete. | 

As a corollary to Theorem4.4 and Proposition 2.6, we have the 
following estimate on the partition function. 

Corollary 4.5. For any given fl:/:0 and x, <x2,  we have 

lim P(exp(xl y(fl)I/-'n 1/2) ~< z(O,,,)e-,,(/~),, < exp(x2 y(fl)l/"n '/" )) 

_ _  ,,2 i,i exp ( _ _ 

5. R E C U R R E N C E  

From now on we discuss the sample path properties of the random 
walk {Si} under the probability measure p~O.,,( In this section we first 
consider a property which is related to recurrence. Let to(n)= 0, 

t i (n)=inf{m>ri_l (n):  Sin=0} /X n, i =  1, 2,... 

r~, i = 0 ,  1,2 ..... are stopping times. It is easy to show that 
z/,, = max, ~<~. ( r ; (n ) - r~_ , (n ) ) ,  where A was defined in Section 1. Before 
stating the main result in this section, let us first prove the existence of 
an exponent /z(fl) describing the behavior of zl,, (see Lemma 5.2 and 
Theorem 5.3 below). For this purpose we prove two lemmas. 

For any given fl:#0 and E e(0, 1) the following is L e m m a  5.1. 
always true: 

2~~ >~ e .... exp (lfll i ~ l b i )  

if n>~ 1 is large enough, where 21~ was defined at the beginning of 
Section 2. 

Although this lemma is simple to prove, it already implies that the 
exponent lt(fl) given in the next lemma is positive. 
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Proof. For any given M>_-I, by (2.1) and (2.3) we know that there 
is a constant C~ e(0, ~ ) ,  which is independent of M>~ 1, such that 

i = 1  \ 1  i = 1  

exp ( nM ~((CIM-2)I/M) nM . fli~_l bi ) 

Thus we get the desired result by letting M~> 1 be large enough [e.g., 
(CiM-2)l /M~e-~].  | 

L e m m a  5.2. Let 

( ( 2  ) )l 
Y, ( j )= logE  Eexp  fl ~ bi(U(Si)+j) Iis~,=o } , j = l , - 1  

i = l  

( (~ ))-' Y,',(j)=log/~ Eexp  fl bi(U(Si)+j) , j = l , - 1  
i = l  

For any given f l # 0  there is a constant/~(fl)e(0,  oo) such that 

lira (2n) -I  Y,,(j) -- lim n -I Y',(j) = -t~(fl), j =  - 1, 1 

As in the proof of Lemma2.3, it is easy to show that Y,, has 
asymptotically a subadditive property. Using this property, one can easily 
prove the existence of the exponent /l(fl). By Theorem4.4 we can then 
easily deduce that the exponent ~(fl) is finite. By Lemma5.1 we then 
succeed in proving that/~(fl) is also positive. 

Proof. By the symmetry properties of {bi}~>, and {S~}i~>l we know 
that Y,,( 1 ) = Y,,( - 1 ). By considering the special paths with { S~, = 0} and 
the Markov property we have that for any given n, m/> 1 

Y,,+,,,(1)<~logE(Eexp(fl ~=, b~(U(S~)+ l ) ) l l s~,=ol)- '  

( ( 2  .... ) ), 
Eexp  fl y" b2,,+~(U(Si)+l) IIs,~,,=o} 

i = l  

.~,o~(~ex~( 2,,-, )_, fl i~__ ' bi(U(Si)+ 1)) I I s~=0 / + l o g E e  -p~ 

( (:~' ) )-' 
+log /~  Eexp  fl b2,,+~(U(S~)+I) IIs~,=o I 

i = l  

~< Y,,(I) + Y,,,(1)+�89 p) 
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As in the p roo f  of  L e m m a  2.4, we can show that  there is a cons tant  p(fl) 
such that  

lim (21l) -1 y,,( 1 ) = -It(fl) 
1 1 4  OG 

We now prove / t ( f l )  6 (0, ~ ) .  Indeed, by Theo rem 4.4 we have that  the 
following also holds: 

E ex - ' ~  ,-. 2,, - l log P t P  zL, i =  i biU(Si))Ils,~,=ol-2v(fl)n 
7(fl),/2(2n)V 2 , N(0, 1), 17 ~ ov 

Hence, there are a cons tant  M)>~ 1 and a subset s~, c D with P(DI)>~ 3/4 
such that  

( 2 , , - ,  ) 
E e x p  p ~ biU(Si) lls~,=o I <-..exp[2nv(p)+MlT(~)V2n I/2] 

i = 1  

if ~1 has occurred. We also know that  there are a cons tant  M2 >/1 and a 
subset ~2 c ~  w i t h / 3 ( ~  2) >/3/4 such that  

exp bi ~<exp(M2 I/~1 17 '/2) 
1 

if t~ 2 has occurred. Using these inequalities, we get 

Y,(1 ) >/log EI~, ~02 exp[  - 2v(fl)n - MI 7(fl)l/2n I/2 - M2 I/~1 nl/23 

>~ - -  2 v ( f l ) n  - -  M I v ( f l ) l / 2 n  1/2 _ M2 Ifll n , / 2  _ l o g  2 

which implies 

/~(/~) ~< ~(/~) < oo, v p e R ' \ { 0 }  

On the other  hand,  by L e m m a  2.1 we know that  there are cons tants  
6 1 , 6 2 > 0  such that  

/3(21o. 2, ~ ~< exp(61 n ) ) ~< O( 1 ) exp( - 62 n ) (5.1) 

By a large-deviat ion result we know that  there is a constant  di s e (0, ~ )  
such that  

2n 
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Thus, by Lemma 5.1 and (5.1) we obtain 

/~" ( E  exp ( -'"- ' 1))  ) fl i~=l bi(U(Si) + IIs,.,=ol 

<~ 2E ( 2~~ exp ( fl ~= b i ) ) - ' 

~2EIl~o,'-,,,,exp,,,,,,,l(2t~ 
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--1 

i = l  

2n  

~< O( 1 ) exp(en ' -  J2 n) + 2 exp( - �89 n) 

( ) + 0(1 ) exp(en).P fli__~t >~Jjn/2 

~< O( 1 ) exp(en) exp( - 6 2  ^ 6377) + 2 exp(-6117/2)  

-..< 0 (1)  e x p ( -  �89 ^ J2 ^ 631l) 

if e �9 (0, �89 A 63) and n/> 1 is large enough. Using this, we obtain that 

Y,,(I) ~< - � 8 9  ^ 6,_ ^ 63n 

which leads to / t ( f l )  >1 �89 /x 6,_ ̂  63 > O. 
It is clear that Y,(1)/> Y' z,_~(1). By Lemma 5.1 we can show that for 

any given e �9 (0. I) there is a constant  Cz �9 (0, co) such that 

Y ' , -  i( 1 ) >/log C_, - en + Y,,( 1 ) 

if n >I 1 is large enough. Since e > 0 is arbitrary, we have 

lim (n) - t  Y ~ , , _ d l ) =  lim (2n) -I  Y,,(1) 

On the other hand, it is easy to show that 

lim n - I  Y~',(1) = lim (217)-' Y~,,_l(1), 

which proves the desired result. | 
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Remark. We already proved that 

~(p) ~ v(p), vp ~: o 

I t  would also be very interesting to give an expression for/~(fl) in terms 
of ft. 

Our main theorem concerning the behavior of A,, as n--* oo is as 
follows. 

T h e o r e m  5.3. For  any g i v e n / ~ 0  and ee(O,p(fl)), we have 

e(~ A,,~[(la(fl)+e)-l,(~t(fl)--e)-l]) P, 1, n--*oo 

where p(fl) was defined in Lemma 5.2. 

The proof of Theorem 5.3 is very involved. We will divide it into two 
steps. First we will prove 

P(~ A,,<~(p(fl) ~)-i) P - , 1, n ~ o o  

This part can be easily proven by using the definition of p(fl) given in 
Lemma 5.2. Lemma 5.4 below will deal with this part. Unfortunately, the 
other part of the proof of Theorem 5.3 is not so easy; in fact a lot of com- 
putation will be involved in the proof of this part (see Lemmas 5.5 and 5.6 
below). 

Let ai = inf{m > i: S,, = 0} /x n - i. Then ai is a stopping time. 

L e m m a  5.4. For  any given f i e 0  and ee(O,p(fl)), 

F.P(~ i = 0, o- i > / ( / t ( f l )  - -  g) - 1  log n) 

<~O(1)n -l-(~/2)(~'(p)-~)-~, i = 1  ..... n, Vn~>l (5.2) 

Proof. It suffices to prove the above estimate for 
i ~< n - [(p(j?) - e ) - I  log n]. We remark that if a~ = j ,  then U(S1) . . . . .  
U(Sj_I) ~0. Using again the Markov property, we can show that 

EIls,=o. ~ (~.p)-~-~ log.I exp bj U( 
j 1 

~< ~ E e x p  fl bkU(Sk) Iis~=o I 
j = [ ( i t ( / 3 )  - -  e ) -  I l o g  n ]  k = 1 

x E e x p  ~ bI+jU(S1 Ilsj=o,u(sl) . . . . .  u(s j_ t )  ~o1 
\ / = 1  

xEexp /~ y' b.,§ I 
m = l  
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[( (2~_, ) )_, 
<<.C 5". Z ~~ Eexp fl ~. bl+i(U(Si)-l) I{s.,j=ol 

[ ( p ( f l ) ~ ) - I  Iogn]  <~2j <~n--i I =  1 

Thus, by Lemma 5.2 we can show that the 1.h.s. of (5.2) is less than 

[ ( c--' ) )-' C ~ Z ~~ E Eexp j 2 ~  bI(U(SI)-I) IIs_,j=ol 
[(l,{(l~)--r-)-Ilogn]~2j<~n--i \ / = 1  ( (~J-' ) )-'] 

+ E  Eexp  ~ ~ bI(U(St)+I) IIs_~j=o} 

~< O( 1 ) n -  l - , . /2)( / . ( /J,- . i - '  

It is clear that 
Theorem 5.3 we 
probability: 

which implies the desired result. | 

From Lemma 5.4 we can also see why ~l(fl) given by Lemma 5.2 is just 
the exponent related to the behavior of A, which was described in 
Theorem 5.3. 

To state the next two lemmas, let us first introduce some notations. 
For any given 6~(0 ,  e/2) we set u,=n ~ and v,,=n ~-~. Without loss of 
generality we may assume u, = [u,,] and v, = [v,]. Let 

( ,  .... ) 
~ ( j ) = e x p  fl y" biU(Si) Icl{= I{IS.,,,l<~(/,(#)+e)_tlog,, } 

i = l  

qj(x,, x2) = E,.,Ii~,,. ~i.(al-~1-' log,,} 

xexp(15 ~ b,j-,,,,,,+iU(Si))l,s.=x,_} 
i = 1  

", i = l  

11j~<~j. To complete the second part of the proof of 
should prove that the following holds with a positive 

r/j(xl, x2) ~< (1 - n  -I -~) Cj(xl, x2) (*) 

for many x~ and x2. From this we can derive that the following holds with 
large probability: 

qj(xl, x2) 4n_~  
%(x~, x2) 

j =  1,._, [n I -~ l  
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for many xt and x2. This then implies Theorem 5.3. To prove ( , )  we will 
give a decomposition of (j(x~, x 2 ) -  Ib(x~, x2). For this purpose we set 

) I ) (n)=E, . )exp fl bu-l)..+iU(Si) Ilsv,,,m=ol 
i = l  

I_.(n)=Eexp fl b(j_I)..§ Ils,=ol 

( - . . .  .... ..... ) 
I 3 ( n ) = E e x p  fl ~, b(j_lht,,+[u,,/2]+s,,+iO(Si) Iis,,_t,,,a] ..... =.,__,) 

i = 1  

(" ) I4(n)=Eexp fl ~. bij_l)..+r../2]+iU(Sl) IIs.,,=ol 
i = l  

[,,,12] +.~-,, ) 
I,(n) = E,., exp fl ~ b(j- i) . .+iU(Si)  llssn+t,,,d2}=o } 

i = 1  

It is easy to see that ( j(xl ,  x2)-qj(xl ,  x2) >~Ii(n) I3(n) 14(17). We now give 
an estimate for I~(n) 12(17) 13(17) (see Lemma 5.5 below), which will lead to 
the proof of (*). 

Suppose [u,,/2] is even. Otherwise, we may consider [u , /2 ]  +1  
instead of [u,,/2] below. Let s,,=[(i.t(fl)+e) -I logn] .  Without loss of 
generality, we may assume s, is even. 

Lemma 5.5. For any given e e (0, 1) and K~> I there is a constant 
C3 e (0, oe ) such that 

p( u 
Ix l  I. I x J  ~< [ (i~(/~) + ~ ) -  i log n ] 

~< C3n-K 

{Ii(n) 12(17) 13(11)<~ exp(--5e2s,,) ~j(xl, x2)} ) 

Proof. Let 

r = sup{i~< [u , /2] :  S i=0}  

By a large-deviation result we can show that for any given K>~ 1 there is 
a constant M >  0 such that 

( ( [,,/2] +.,.,, ) ii(n)f2(n) ) 
P E.,.)exp fl ~ b(j_l),,,,+iU(Si) IIt,,/2]_~>.M.,.)>~ 

i = l  

<~ O(1) n - x  (5.3) 
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We remark that if S.,.,, + e,,,,/-'] = 0, then I St../2] [ <~ st,. By Lemma 5.1 (replacing 
e there by e z) and the Markov property we show that 

[u,,/2] + s,, / 

E,-,exp fl ~ bij-llu,,+iU(Si) Ils,,,+t,,,,/,_l=o.e,,,,/2]-~<.M.,.,,I 
i = l  

..... ) 
= ~. E..,exp fl }" b,j_,,,,,+,U(S,) 

Ixl ~<s. i =  I 

I {  St, , , ,?_] = x ,  S , , ,  + [ , , , /21 = o ,  [ u , , / 2  ] - r ~< M s , , }  X 

Ms,, / [ u,,/2 ] --/i \ 

~< E ~. E,., exp ~fl E b,j_,,,,,,+,U(S,)) IIst,,,,,._l_,,=ol 
" 2  / I = 1 I x l  ~< s n  t 1 

x ~ Eexp  p l~,,,,+~+t,,,,/,-] U(Si) Ils,,_,,_=o I 
12=I 

xexp fl ~ b(j_l)u, ,+ i 
i =  [u , /2 ]  --/i + I 

xexp fl ~ b i-,.,,,+, 
i = s n - - 1 2  + I 

Msn / [ It, I/2 ] --  II \ 

.~.8s,,exp(2e-s,,) ~. E~.,exp fi ~ b ( j _ l ) , , . + i U ( S i )  ) 
/ 1 = 1  i = 1  

I{ st,,,,~] -t, = ol X 

x ~ Eexp  fl +~+D,,,/2~ U(Ss) IIs~,,-~.,=ol 
/ 2 ~ l " ~  

t I 

x E e x p  b~j_l~,,,,+~,, i,+iU(Si) I l s l -o l  
- -  - 2 - -  

i 1 

<~ 8s,'exp(2e2s,) It(n) I2(n) 

By (5.3) we know that 

/~(Idn) 1_,(17) ~< (8s,, exp(2eZs,,) ) -l  ( 1 - n-I )  Is(n)) <~ O( 1 ) n-K 

By a similar reasoning (using Lemma 5.1) we show that 

P(Is(n) 13(n) ~< (8s,, exp(2e2s,,))- I ( 1 --n - l  ) ~'(Xl. x2)) ~< O(1) n -K 
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Thus we obtain 

P(Ii(n) I2(17) 13(n) ~< (8s, exp(2e2s,,)) -2( l - -n - j  )2~(x 1 , x2)) 

~<O(1)n -K 

Using this, we then complete the proof  of Lemma 5.5. II 

( , )  will be proven in the next lemma. 

k e m m a  5.6. For  any given fl :~ 0, K~> 1, and e ~ (0, 1 A/z(fl)) there 
are constants C4, C5 E (0, oz ) and io ~ [ - 1, [/2(fl)/e 2] + 1 ] such that 

( >,, ,-, }) 
N ~ / f / ( x , ,  x , )  ~< 1 - C4 exp( - ( l l ( f l )  - ioe2)s,,) 

Ixll,  ].x'2J ~ [ ( l d / / )  + e ) -  log n ]  

/> Cs(exp( - ( i o  + 1 ) e2s, , ) -n  -x)  

Proof. By Lemma 5.2 we can show that for any given e e (0, 1 A It(fl)) 
there are a constant C6e(0 ,  ~ )  and Joe [ -  1, [it(fl)/e 2] + 1] such that 

(exp( -- (/~(fl) - ( i  o - 1) e 2) s,,) P 

( (i~,' ) )' ~< Eexp  fl b ; (U(S; )+I )  Ils,,,=ol 

~< exp( - (/~(fl) - ioe'-) s") ) 

/> O(1 ) exp( - ( I t (P )  + e-') s,,). exp((It(fl) - ioe 2) s,,) 

/> C6 exp( - (io + 1 ) e'-s,,) 

B y  definition we know that 

I2  l(n)/4(n) 

( (~ ) ) =�89 E e x p  fl bcJ-I.,.+t,,./21+i(U(S;) +1)  IIs,,,=ol 
i ~ |  

( (~~"- ) )' i --~lat E e x p  b~j_t),,,,+[,,,,/2]+i(U(Si)+ 1) I{s,,,=ol >~_3e 
\ i = l  

Hence, 

P(exp( - l t ( f l )  - (io -- 1 e2s,,)) -%< I_V l(n) I4(n)) ~> Cv exp( - ( i o  + 1 ) e2s,,) 
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for some constant C 7 ~ ( 0  , o o ) .  By the Markov property of {Si} we have 

(j(x, ,  x~_)- ~j(x~, x,_) 

>~Ex, lIJ,,,,>.,,,l e x p ( f l  ~ b,j-l, , , ,+iU(Si))lls,, ,=x,_l 
i = l  

/> Ii(n)I2(n) Is(n)(IzJ(n) I4(n)) 

Thus, by Lemma 5.5 we have 

I-vii, Ix=l ~< [(la/~')+~:)-I log n] ~j(Xl' X2) 

/> exp[ -e-s , ,  - ll(p.) - ( io _ i ~ ~-s,,] 

> / -  C6n -K + C7 exp[ -- (io + 1 ) e2s,,] 

which proves Lemma 5.6. | 

We are now in a position to complete the proof of Theorem 5.3. 

Proof  o f  Theorem 5.3. For any given ee (0 ,1  Alt(fl)), by 
Lemma 5.4 we know that 

~'Pl~ n) - l  A,, >1 (/t(fl) - e) - i )  

<~EP �9 {Si=0,  a~>( / t ( f l ) - e )  -I logn} 
i I 

~< ~" EPI~ o'i~>(/t(fl)-e) -1 logn) 
i = l  

~< O( 1 ) n -~/'-~wl/J~-,~-~ 

which proves that 

Pl~ d,,>~(lt(fl)--e) - l )  P,  O, n--, 

To consider the other direction in the statement of the convergence in 
Theorem 5.3, we set 

~o,,I f ~(v,,)dP, V A ~  P~' (A =(E~(v, , ))- '  
,1 .4 

and 

An(i)= max { l - k :  Sz=Sk =0,  U(S~+~) . . . . .  U(Sk_~) #0} 
( i  - -  1 ) u n  < k < I ~< tit  n 
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Then, by the Markov property of { S,.} we can show that 

EI{(iog,)-, ~,, <~(/,(#)+~)-, } ~(V.) 

t'n 

~<E I-I II~. .~r tog.,l ~(v.) 
i = I  

2 q l ( 0 ,  .'VI) q2( .X ' l ,  X 2 ) " ' ' q v , , ( A ' v , , _ _  1, Xt,,, ) ( 5 . 4 )  
Ixll,...,Ix,,,[ <~ ( ( i t ( i f )  +t~) - I  log t l ]  

Let 

Aj = 
Ixfl, Ix21 ~< [(p(fl) + ~ 1 - 1 1 0 g n ]  

qj(x~, x_,) } 
~j(Xl ,  x2) ~ 1 - -  C4 e-~#(pl -iod) .... , j = 1 ..... v,, 

where io~ [ - 1 ,  [p(fl)/e'-] + 1] was given in Lemma 5.6. We can choose a 
large enough K>t 1 such that 

n - K  <~ le-W(#)-~o:).~. 

Since A~ ..... A,,,, are independent,  by Lemma 5.6 we have 

3 - - ( i 0 +  I ) c2.'q~ --4 I Aj < ~ C5 v,,e <~ O( l ) n 
j i 

if 6 ~ (0, 1 ) is small enough. If 

t, n 
1,4>. 3 r  o--(io+l}~2s,, 

"~,...5lJn,. 
j=l  

has occurred, then there is a constant Cse(0 ,  ~ )  such that r.h.s, of (5.4) 
is less than 

O( 1 )( 1 - C41l  - 1  +[c+iot2)(id/J)+t:) - I  ) n l  - ~ - ( i o +  i ) ..~.2(tt(fl) + c) -I  

x y. r x,) r x2) . . .  L,,,(x,,,,_~, x,,,,) 
Ixl I..-.. Ix,,nl ~< [ Lulfl) + c ) -  I log n] 

<~ C8n-4E~(v , , )  

if 6 E (0, (e _ez) /{p(f l )+e}  ). From this we obtain that 

/'5(p(0.,~((logn)-i A , < ~ ( p ( f l ) + e ) - l ) > C 3 n - 2 ) < ~ O ( 1 ) n  2 (5.5) 

We now use (5.5) to prove 

Pl~ A, ,<~( l t ( f l )+e)  - l )  P ,  O, n ~  co (5.6) 
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In fact, it is clear that 

ISi,,,,I <~ (/~(fl) + e) -~ log n, i = 1 ..... v,, 

if (log n ) - I A ,  ~< (kt(fl)--e)-i. Thus, 1.h.s. of (5.6) is less than 

(EZtO.,~) - l  E~( v,,) Pt~~ n) -1 A ,  <~ (p(fl)  + e) - i ) 

~< U~~ n) -1 A, ~< (p(fl) + e) - t )  

From this and (5.5) we get indeed the desired result (5.6). This completes 
the proof of Theorem 5.3. | 

R e m a r k .  The convergence stated in Theorem 5.3 is only proven to 
be true in probability. It would be very interesting to prove that such a 
convergence also holds almost surely. In fact, from the proof of 
Theorem 5.3 we see that 

lim P t ~ 1 7 6  - I  A,,~<(p(f l )+e)- ' )=O a.e.-/~ 

Unfortunately, we are presently unable to get an almost sure convergence 
in the other direction. 

6. LOCALIZATION 

In recent years there have been many studies on the localization of 
random walks and diffusion processes (see, e.g., refs. 2, 6, and 10 and 
references therein). In a similar spirit, in this section we shall investigate the 
localization of the random walk {S,,},,~>o under the probability measure 
p~O.,,. Our main result in this section is as follows. 

Theorem 6.1. (i) Ifp(fl) ~ (0, 1/8], then the following holds for any 
given e ~ (0, l ): 

pIO.,,~ ( logn) - i  max ]Si l~ , 1, 
,~ i~ ,  (2p(fl)) 1/2' (2/~(-fl-~'/2 J 

17 ---~ 0(3 

where p(f l )  was defined in Lemma 5.2. 

(ii) If/t(fl) > 1/8, then the following holds for any given e ~ (0, 1 ): 

p~o.,~ (logn) -I max IS,-[~ 1, 
, ~,-~<,, 1/4 + 2p(fl)' 1/4 +2p(fl)J  

n - . ~  oo  
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Let us first make a remark on the value of lt(fl). By the H61der 
inequality we can easily show that limlp I _ ~ r = 0 and limlp I -o+ lt(fl) = oo. 
Therefore,/x(fl) e (0, 1/8] if ]ill is large enough, and/2(fl) > 1/8 if ]ill > 0 is 
sufficiently small. In other words, both cases in Theorem 6.1 can happen. 
The proof of Theorem 6.1 is also involved. The idea to prove Theorem 6.1 
is basically similar to the one used in the proof  of Theorem 5.3. So we will 
not give a detailed proof for Theorem 6.1. We will prove two lemmas. 

L e m m a  6.2. For fl ~ 0 and any given e~ ~ (0, 1 ) we have 

lim ~ptO,,,~( max Iail ~ (X(fl) + e,)  log 17) = 0 
n ~  ,~ l <~i~<n 

where 

z(/~) = ~(2ll(p))-'/2 
(( 1/4 + 2~(p))- ' ,  

u(/~) ~< 1/8 

/~(fl) > 1/8 

R e m a r k .  For the case of the ordinary random walk in Z 1, it is well 
known that the quantity n- ' /2  max, ~i~,, [Si[ is weakly convergent to a real 
random variable. This fact tells us that Z( f l )=(2 l t ( f l ) )  -~/2 for the case of 
the ordinary random walk in Z I. The random walk discussed in the present 
paper differs from an ordinary random walk by having an exponential term 
as a statistical weight, a fact which induces a different relation between Z(fl) 
and ll(fl), as given above. 

Proos  For any given constant Co~(0, ~ )  we set 

g(x)  = inf + Co y 
y / >  2 x  

(6.1) 

It is easy to show that 

~'(2 Co) - '/2x, 
g(x)  = (x( 1/4 + 2C0), 

Co ~< 1/8 

Co > 1/8 

For the simple random walk {Si} we have the following estimate [for suf- 
ficiently small e_, ~ (0, 1 )]: 

P( max ISA >~(X(fl)+el-2e2) logn) 
I <~i<~(j--  I )~2 I o g n  
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By Lemma 5.4 we know that for any given e,_ e (0, 1) there is a constant 
M/> 1 such that 

EPt~ i> (Me2 + e,_) log n) ~< O(1) n-2 

where A,, was defined at the beginning of Section 5. Thus, as in the proof 
of Lemma 5.4, by Lemma 5.2 and the Markov property of { Si} we can 
show that 

j~piO.,,j( max IS, I ~ (x(/7) + e , )  log n) 
, ~<i~<n 

~< O(1) n--'  + L M+t Z /~P~~ = 0; U(S,,+,) = 0 
i= 1 j~[2(Z([3)+el)/e2] 

for some u~ [ [ ( j -  1)e2 log n] ] ,  [ ( j +  1) ez log n] ] ;  

and U(S,.+i) v~O 

for all v~ [1, u -  1], 

max tS,+il>>.(Z(fl)+el-2ez)logn) 
1 ~< u ~< [{ j - -  I le2 log n]  

~< O( 1 ) n -2 + O( 1 )(M + 1 )n log n exp(-g(x(fl)  + e~ - 282) log n)) (6.2) 

where g(x) was defined by (6.1) [-replacing Co there by p( f l ) -e~] .  It is 
easy to show that g(x(f l )+et-2e_,)  is less than 

I " " "u2+(el--2e2)(2(/x(fl)--e~))u2 , /~(p)--e;~<l/8 1 - ( ~ )  _' 

} .  2e~ e I --2e, 

Thus, if el E(2e,_, 3e2) and e2~(0, 1) is sufficiently small, we have that the 
l.h.s, of (6.2) is less than 

O( 1 ) n - 2  + O( 1 ) n- n - l  - ~.,/2 ~< O( 1 ) 17 -,2/2 

which proves tile desired result. | 

To state the next lemma we introduce some notations. For any given 
~s  (0, e/2) we introduce u, = n  ~ and v,, = n  ~ -a  as in Section 5 and make the 
same assumptions on them as in that section. For any given e3, e4 ~ (0, 1) 
we set 

(x(/~) - e )  2 
q ( j )  4- ( / t ( f l )  - } - e 4 ) ( j 8  3 + 83)  

2(je3 + e3) 

822/83/3-4-22 
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One can show that  there is a j o e  [ [ 2 ( X ( f l ) - e ) / e 3 ] ,  oo) such that  

q(Jo) = inf q(j) 
j >~ [ 2 (z f l l )  - c)1~3 ] 

Let t,, = [ J o 8 3  log n] and assume that  t, is even (otherwise, we m a y  con- 
sider t,, + I ra ther  than t,, below). Let 

q~(xl, x_,) = E,-, I1 maxl <~i<~,,,, ISil <~ (X(fl) - ~ )  I o N  ,,} 

x e x p  (fl ~ b(j_l,t,,+iU(Si))lls,,,=x,_, 
i = 1  

The next l emma is an analog of L e m m a  5.6. 

L e m m a  6.3 .  For  any given f l r  0 and suffuciently small es, e6 e (0, 1) 
there are constants  Ct ,  C2 e (0, m )  and ioe [ - 1, [/u(fl)/es] + 1 ] such that  

I .v l l ,  Ix2 l  ~< I x ( i l l  - c)  l o g  n 

>/C._ exp( - io + 1 ) e 5 t . )  

where ~j(xl ,  x_,) was defined in Section 5, and 

( Z ( f l )  - -  e)2 (log n) 2 
T,, - + (/[l(/~) " [ -  e 4 )  t , , -  (i o -- 1 ) e 5 t,, 

2t,, 

Proos As in the p roof  of  L e m m a  5.6, by L e m m a  5.2 we can show 
that  there are a cons tant  C3 e (0, oo) and io s [ - 1, [lt(fl)/es] + 1 ] such 
that  

) )' E exp fl ~ bi(U(Si)+l) IIs,,,=ol 
i = l  

e [ e x p ( - ( r  - (io - 1 )es)t,,), exp( - (it(fl) - ice 5) t,,) ] )  

~> C3 exp( - ( i o +  1) est,,) 

As for I,_(n) and I3 (n  ) given in Section 5, we introduce I_~(n) and I~(n), 
replacing s,, there by t,,. Let 

I~(n)=Eexp (fl ~ b,j_,,,,.+E,,,,/zl+,U(X,)) lls, =ol 
x i = 1  

X Ilmaxl ~.i<~t n ISil > IX(#)-el log I1} 
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Then we show that 

~j(x,,  x,_) - rlj(x , , x2) >!- Ii(n) I~_(n) I ; (n) ( I ; - l (n)  I;(n)) 

As in the proof of Lemma 5.5, we obtain that for any given e7 e (0, 1) and 
K~> I there is a constant C4e(0,  or) such that 

p 
�9 , - -  U 

Ixll Ixq <~(x</~) - e l  iogn 

We remark that 

{1,(17) I~(n) I.~(n) ~< exp(-e7tn) ~ j ( x  I , x2)} ) ~< C 4 n - K  

P( max  IS,I > (Z(P) - e) log n) 
1 ~ i<~tn  

/ (xCP) 
>/O( l ) exp  ( -  

\ 

Then, as in the proof of Lemma 6.2, we show that 

p( I~- l (n )  , >. I,;(n) ~- C5 exp( - T.)) >/C6 exp( - ( i  o + 1 ) est .)  

for some constants C5, C6 ~ (0, o~ ). Therefore, if K~> 1 is large enough, 

,( {1 ,,,x, 
I-x'ft. I-x21 ~<x(/l,-~)logn ~J (xl'  X2) 

l 
~>= C6 exp( - ( i o  + 1) est,,) z 

> ~ C s e x p ( - e 7 t , , -  T, , )})  

which proves the desired result. | 

We remark that there is a constant e8 e (0, 1), which is only related to 
~, e3, and e4, such that 

( Z ( ~ ) -  e)2(log n) 2 
+ (p(fl) + e4) t,, ~< ( 1 -- e8) log n 

2t,  

Thus, as in the proof  of Theorem 5.3, we can use Lemmas 6.2 and 6.3 to 
prove Theorem 6.1. We omit the details. 

NOTE ADDED IN PROOF 

It has been proven in ref. 13 that lim . . . . .  pl0.,, ( S k = x )  exists with 
probability one for any fixed k >/1 and x e Z'.  
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