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Free Energy and Some Sample Path Properties of a
Random Walk with Random Potential
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We study the asymptotic behavior of the free energy for a model (defined by
Sinai) of one-dimensional random walk with random potential. In particular, we
obtain a central limit theorem and a strong law of large numbers for this free
energy. We use some results on the free energy to study some sample path proper-
ties of this random walk which are related respectively to its recurrence and
localization. Some exponents describing the recurrence and localization are found.
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1. INTRODUCTION

To study the (physical) behavior of disordered systems several models have
been developed. Models describing heteropolymers are of particular inter-
est, also due to their importance in biology. In a model of this type first
proposed by Garel et al.'® the heteropolymer chain consists of two types
of monomers: “hydrophobic” (A) and “hydrophile” (B), interacting with an
(1dealized) selective interface between water and another nonpolar solvent
(e.g., oil). Garel et al. compare the model with experimental situations and
discuss in physical terms a localization transition. This work is related to
subsequent work by other authors. We cite here in particular the work by
Grosberg ef al.,'” who provided a more detailed physical study of the
localization transition for a simplified version of the model (see ref 5 for
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further references). More precisely, ref. 5 investigated the behavior of the
free energy near the point of transition from a delocalized to a localized
regime for two basic models, chains with periodic resp. “annealed random”
sequence links. Based on the work in refs. 4 and 5, Sinai'® suggested a
model of one-dimensional random walk with random potential, where the
two links A and B appear as a Bernoulli environment, and established
some precise sample path properties in this model. The main aim of the
present paper is to study the asymptotic behavior of the free energy of
Sinai’s model and then discuss further sample properties. We will mainly
prove that the central limit theorem holds for this free energy, and then use
results on the free energy to discuss some path properties of this random
walk, such as recurrence and localization, which are indeed different from
the corresponding properties of the ordinary random walk. Concerning our
results on the free energy, we had to develop our own methods, despite a
large literature on the free energy of some other disordered systems (see,
e.g., refs. 1, 3, 8, and 11 and references therein). In fact, it does not seem
easy to adapt those methods to directly solve the problems posed by the
present model. Now let us introduce the model we study in this paper.

Let {S,} >0 be a simple random walk in Z', starting at the origin, on
a probability space (2, #, P), and the b, e { —1, 1}, k>0, be independent
identically distributed (i.i.d.) random variables on a probability space
(@; #, P), which are independent of {S,}, o on the product space (2 x &,
F®F, PRP). For convenience, we let E and E be, respectively, the
expectations with respect to P and P, and assume Eb, =0, Vk>0. As in
ref. 9, let the function U(x) be defined by

1, x>0
Ux)=+0, x=0
-1, x<0

The partition function of this system is defined by

Z'"%" = Eexp (ﬂ Y ka(Sk)>, V1

k=0

where |f| € (0, c0) is a parameter representing the strength of the disorder.
The free energy of this system is the random variable log Z‘®™, Define a
new probability measure by

P(O,n)(A) =(z(0.n))—l J;i exp (ﬁ i
k_

=0

ka(Sk)>dP, VAe F
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As mentioned in ref. 9, it is very interesting to study some properties
such as recurrence and localization of this random walk. For some sequen-
ces {k,} 5 with lim, _, , k,= o0, Sinai'® already obtained some estimates
for the probability P‘*")(S, =x).

In this paper, both the central limit theorem and the strong law of
large numbers are obtained for log Z‘®™. Using these limit theorems, we
prove some sample path properties (e.g., recurrence and localization) of
this random walk {S,},., under the probability measure P‘®". Unfor-
tunately, we are still unable to show that the limit lim, _, , P'®"(S, =x)
exists with probability one for any fixed k > 1. Quite recently, Bolthausen
and Hollander!'? discussed the localization—delocalization phase transition
for the model with nonsymmetric random environment (ie., Eb, #0).

This paper is organized as follows. In Section2 we study the
asymptotic behavior of the mean value of this free energy. More precisely,
we prove that there is a constant v(f)e(0, o) for f#0 such that (see
Proposition 2.6 below)

Elog Z0.m
n

logn

—vp)|<0(1)

The main aim of Section 3 is to prove that the variance of the free energy
behaves roughly as # (for n — oo):

C,n < Var(log Z°9") < Cyn, nzl1 (1.1)

for some constants C,, C, (0, o0). The upper bound in (1.1) can easily be
proven by using the approach given in ref. 11. However, the proof of the
lower bound in (1.1) is not so simple. In Section 3 we concentrate our main
attention on the proof of this lower bound. In Section 4 we first prove that
the variance of the free energy behaves exactly as y(f)n for some
(p)e(0, o) with f#0, and then prove that the central limit theorem
holds for the free energy. Sections 5 and 6 are devoted to discussions of the
sample path properties of the random walk {S,} under the probability
measure P, We first discuss the asymptotic behavior of the quantity

4,=: max {j—iS;=8=0,U(S, )= - =U(S,_,)#0}

I<i<j<n

The main result (see Theorem 5.3 below) is that there is a constant
w(pB)e(0, oo) with §#0 such that

PO (logm) ™ 4, € (u(B)+) ™, (B =&))L, n—oo
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for all e (0, u{ B)). We remark that in the case of the simple random walk,
4, behaves roughly like n. In Section 6 we discuss the asymptotic behavior
of max, c;, |S;| under the probability measure P‘*“". We prove that for
any given f#0 there is a constant y(f)e (0, o) such that the following
holds for all ee(0, 1) (see Theorem 6.1 below):

PO ((log n)~ ' max |S|e[(1—e)x(B). (1+¢)x (A — 1, n-ow

I1<ig

The following relation between u(f) and y(f) for 0 is also derived in
Section 6:

()= {‘2’“/’”"”, H(B) (0, 1/8]
PO= Va2 )", w(B>1/8

For the case of the ordinary random walk in Z', however, from the scaling
property one can see that max, ., ., |S;| behaves roughly as n'2 For the
present random walk we obtain different relations between g( ) and x(f)
for different u(f). Since the present random walk has an exponential term
as a statistical weight, its scaling property has been changed (we suggest
looking at the proof of Lemma 6.2 for more information on this).

2. THE MEAN VALUE OF THE FREE ENERGY

Let R,=Elog Z'“". The main aim of this section is to discuss the
asymptotic behavior of R,. It is easy to see that R, satisfies asymptotically
the subadditive property. Using this, we can easily show that the limit
lim, _, . (R,/n) exists. We will derive a precise estimate for the partition
function Z‘“" (see Corollary 4.5 below). So we need to derive a more
precise estimate for R, /n (see Proposition 2.6 below). Let us first prove a
lemma.

Lemma 2.1. For any given f#0 there are constants & de(0, o)
such that

n

13<E1{S"=0} exp (ﬁ Y b,U(S,)>Sexp(én))gO(l)exp( —en)

i=0
if n=1 is even.

The main idea of the following proof is basically from the proof of
ref.9, Lemmal. Lemma2.l will be used to prove that the limit
lim,, _, _.(R,/n) (if it exists) is positive.
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Proof. Suppose n>=1 is even. Let M=M(f)>=1 be a fixed (even)
number, whose value will be specified below. To prove this lemma we will
mainly consider the special path of this random walk: S,=0, §,,=0,
Soar=0,..., S,» =0. For convenience we set

Z{ MM = Eexp (ﬂ 'Azl:l b tymay U(Sj)> J
j=
and
Z'%" = Els, - o) €Xp <ﬂ Z b,-U(S,-)>
i=0
Since U(S,)=0, we have

Z(O.I!M) — Z(I.m\l)

nM
=EI{SHM=0} exp <ﬁ Z blU(S1)>

i=1

nM "
= Eexp <ﬁ Z b,U(S:)> H I{Si.-\l=0}

i=1 i=1
> l‘l Z:)(.:;)—HM.iMi (21)
i=1
It is clear that Z°M), Z{M2M) . Ze =1 MM are independent identically
distributed random variables on (Q, #, P). We want to prove that
p

ElogZ%">2 if M>1 is large enough. For this purpose we first prove
that there are My>=1 and J,(f) € (0, oo) such that

Elog ZOM > 6,(f) M2, M>M, (2.2)

Here and in the proof of Lemma 2.1 we always assume that M is even. By
computation one can show that (see the proof of Lemma 3.4 below)

P(§,>0,.,8,_,>0,5,=0)
=P(S,<0,.,8,,_,<0,S,=0)=0(1) M7
Thus, by the definition of U(S;) we have

M
ZPM > E<exp </)’ Y bjU(Sj)>
j=1
X (1{S| >0..,Sy-1>0, Sy=0!} + I(S] <O..... Spr—1 <0, Spy=0} ))

>0(l)yM~ " (exp <ﬂ Aﬁ b,-)+exp<—/)’ f b,->> (2.3)

i=1 i=1
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which implies that
M
log Z{" > O(1) — L log M + | B] ( ) bf(
i=1
Hence, there are constants C,eR! and C,€ (0, oo) such that

M
Elog ZM>Cy—TlogM+ B E| Y. bi‘

i=1

=>C,—~LlogM+C,|B| M7, M>=1

From this one can see that (2.2) is indeed true. Thus we can choose My > 1
such that

ElogZPM 22, Mz=M,

By (2.1) we know that

n
]Og Z(O,nM)> Z log Z{)('I;)—I)M.iM), M? MO

i=1

and so
E‘ log Z(O.HM) > 27’[, M? M()

By a large-deviation result we show that there is a constant C(M) e (0, o0)
such that

P(‘ S (log ZLi VMM _ F log 2= hinn )211)

i=1

< O(1) exp(— C(M)n), Vnz1

This proves that

P <log ZonM < N Elog Z{i- MM _ n> < O(1) exp(—C(M)n)

i=1

which implies
P(ZO"M < ey < O(1) exp(— C(M)n), Vnx1

Using this one can easily prove the desired result. ||
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Let P, be the probability measure for the random walk {S,},0
started at x, and E, be the corresponding expectation. We remark that
P=P,and F=E,. The main result in this section is Proposition 2.6 below.
To get this result we will mainly prove that R, satisfies asymptotically a
subadditive property (see, €.g., Lemma 2.3 below). To this end it suffices to
prove that Ejexp(8Y7_,b,U(S)) and E.exp(f3>"_,b;U(S;) have
asymptotically the same behavior. Lemmas 2.2 and 2.3 will be devoted to
proving the above assertion,

Lemma 2.2. For any given f#0 and M >1 there are constants
K>1 and C;€(0, oo) such that

P <Ex exp (/3 Y b,-U(S,-)> 2111"2“""’)

i=1

<Cym™™,  VYxeZ!, Vm=1

Before embarking on the rigorous proof of this lemma, let us make a
few remarks. First, we need only prove the above estimate for x e Z'\{0}.
We introduce a random variable

t=inf{m=>0:S,,=0} An

Heuristically, we expect the asymptotic inequalities

E, exp<[)’ i b; U(S,.)>$Eo exp </3 i b;U(S,-)>

i=1 i=1

E,exp <,B i b; U(S,-)><E0 exp <ﬁ i b,»U(S,.)>, m<n

i=1 i=1

{by Lemma 2.1)

to hold true, It is, on the other hand, not difficult to see that the lemma
follows from these inequalities.
We now give the rigorous proof of Lemma 2.2.

Proof. By definition we know that |x| <t < n. Thus, by the Markov
property of {S;} we have

E, exp (ﬁ S b, U(s,-))

i=1

n J n—j
= 3 Eddieepew (8 S 0,00 ) Eexp (BT b, US)) (24
i=1

J=1xl i=1

Since b,,..., b, are i.i.d. and Eb,=0, by a large-deviation result we can show
that for any given ¢ € (0, 1) there is a constant C, e (0, o) such that
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J
<Z U(x) >bj><0( )exp(—Cyj)

On the other hand, by Lemma 2.1 we know that there are constants Cs,
C,€(0, o0) such that

j
P(Eexp <,B Y biU(Si)>I{S,=0} SCXP(C51)>

i=1

< O(1) exp(—Cg j)

if j=1 is even. Hence, if j=1 is even and de(0, 1) is chosen to be suf-
ficiently small,

F(exp </)’ i b,-U(x));Eexp </>’ ‘Z b,-U(S,-)> I{Sj=0,>

i=1 i=1

F(exp <ﬂ i biU(x)>>exp(5j)>
i=1

+P <Eexp (ﬂ i b, U(S,-)> Iis o <exp(aj)>

i=1

J
<O(1)exp(—C,J) +P<Eexp< Zb,-U(S,))gO(l)exp(Qj))
i=1

<O(l)exp(—Cy A Cgj)

Using the inequalities

P(2e2Xn)<P(Ulezn))<T e<n

we show that

}3< i E.I,_; exp <ﬂ Z b, U(\)>Eexp <ﬁ'ijb,+, S)>

Jj=1[log m] i=1 i=1

n—j
> Z EI . _,Eexp (ﬁ Z b, U(S, )Eexp <[)’ Y b,+_,-U(S,)>>
J=1[log m]) i=1 i=1

n

< Y P(E_\.I{,=j} exp <ﬁ Z b,-U(.\')>

J=1{logm] i=1

J
ZE_\YI{T__j}EeXp <ﬂ Z b,U(S,)) I{S/=0}>
1

i=
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n

<o) Y exp(—Cyn Cgj)

J=1[logm]

< O(1) exp( — C,llog m) (2.5)

for some constant C;e(0, o). Hence, if /=1 is large enough and
j=I[logm],

Lhs. of (25)<O(1ym™M
We also remark that
Y Ed._;<l
J=1[logm]
Using this, one can easily show that

n j
1~’< Y, EJ._jexp <ﬁ Y b,-U(x))

j=1[log ] i=1

n=j
x E exp (ﬁ Y by U(S,»)> BZ‘O‘"’>

i=1

<ONYym—M (2.6)

if /=1 is large enough. We now fix a constant /> | such that (2.6) holds.
If j (<I[logm]) is even, then there is a constant K> 1 such that

J
Eexp ([J’ Z b,U(,\-)> <O(l)ym'K-1nr
i=1
and
j .
Eexp <ﬁ > b,»U(S;)) Iis,0, 2 O(1) m=K=D2(log m) =12
i=1

Moreover, by the Markov property of {S;} we have

j g
Z'*" 2 E exp <,B Y biU(Si)) Is,—0y E€xp <ﬁ 2 bj+,U(S,-)>

i=1 i=1
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Thus, by computation we get

I[log m] J b—j
Y. EJi._jexp <ﬁ Y b, U(\)>Eexp(/>’ Y bi+jU(Si)>

J=1x| i=1

I[log m] n—j
<o’y meEep(gY b, US))

J=Ix|
{log m)

<O(l) Y m* '(logm) 1/°Eexp< ZbU )I{S/:O;

Jj=lx| i=1

x E exp <ﬂ "ij bi+,iU(S/)>

i=1

i=1

I[log m]

<o(l) Y ~!(log m) ”-Eexp< ZbU >

J=1xl

i=1

<O(1) m¥Eexp <ﬁ 3 b.US))

i=1

Combining this estimate with (2.4) and (2.6), we then obtain the desired
result. ||

Lemma 2.3. For any given o €(0, 1) there is a constant Cge (0, o0)
such that

Rn +m ™= CS log n + Rn + Rm

f n*<m<n.

From Lemma 2.3 we can see that R, is not strictly subadditive.
However, the estimate given in Lemma 2.3 is enough for proving the exist-
ence of lim,_ . (R,/n). Lemma 2.3 is actually an immediate result of
Lemma 2.2.

Proof. Since |S,| <n, we have

R"+,"=E10g Z Eexp(ﬂz biU(Si)>I{S,,=.\'}

xX=—n i=1

xE, exp<ﬁ i b, .. U( S)>

i=1
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By Lemma 2.2 we know that there is a constant K;>1 such that

P max Evexp (83 by, US) ) ZnEexp () by US)))

—n<x< : :
nEx€<n i=1 i=1

< i 13<Ex exp <ﬂ i b,-U(S,»))ZnK"Eexp <ﬁ i b,~U(S,-))>

N=—n i=1 i=1

<O(l)yn—*

Thus, R, ,, is less than

Elog </1K°E exp <,B i b,-U(S,-)> E exp <ﬁ i b,,+,-U(S,-)>>

i=1 i=1

+ (E(log Z'%my2)\/2 p12 <max E. exp (/3 > b,,+,~U(S,~)>

|x|<n i=1

=>n®Eexp (ﬂ > b"+iU(Si)>>

i=1
which is bounded from above by
Kologn+R,+R,,+0(1)fn-n"><Cylogn+R,+R,
for some constant Cy (0, o0). This completes the proof of Lemma 2.3. ]

We now use Lemma23 to prove the existence of the limit
lim, _, (R, /n).

Lemma 2.4. For any given f#0 there is a constant v(f) e (0, o)
such that
lim n='R,=v(})

n— o

As mentioned before, R, does not satisfy the (strict) subadditive
property. So we cannot get the desired result immediately from Lemma 2.3.
In the following we shall prove that for any given £ (0, 1) and sufficiently
large m>=1

n~YCylogn+R,)<e+m Y (Cylogm+R,,), nzm

which implies the existence of the limit lim,, _, (R, /n).

Proof. Let y=liminf,_ _(R,/n). By Lemma 2.3 we can show that
there is a constant C,€ (0, o0) such that

Cplog(n+m)+R,,,,<Cplogn+R,+Cylogm+R,,
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if n,<m<n Let
Rn = C'10 log n + Rn
Thus, if n*<m<n and n =1 is large enough,
RI"'F" S R'l + RI" (2'7)

It is clear that x4 =liminf, _, (R, /n). For any given ¢ (0, 1) there is a suf-
ficiently large m >1 such that

l’n_IRm _”l <¢€
Moreover, for any given n>m there are l,,..., [, € {0, 1} and my<m such

that /., =1 and

K
n=mYy [2'+m,
i=0

Let us set R(u)=R, and R(u)= R,. From the proof of Lemma 2.3 we can
see that for any fixed Le[1, k]

k k—L
R.,SO(l)logn+R<m > li2i>+R<n1 > li2’+1110> (2.8)

i=k—L+1 i=1

Since |b,|, |U(x)| <1, we have
R,<|Bln (2.9)

We choose a sufficiently large constant L > 1 such that (for L <k)
k—L . k .
Y L2ige Y 12
i=1 i=1

By (2.9) we have

k—L
n~'R (m > [,.2"+mo><£],8| (2.10)

i=1
Clearly, we can choose a€(0, 1) and k = L such that m* <m/2 and
2k—L+ Im > (zk’,”)a
By (2.7) we have
k k
R <m Y 1,.2"> < Y LR(2m)

i=k—L+1
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and
R(2m)<2'R,,
Therefore,
R<m s 1,.2">< Y 2R,
i=k—L+1 i=k—L+1

From this we obtain that

R(m Zf=k—L+l li2i)<Zi‘( A L+1 12'17,,,<&

~
n K oli2im m

y (2.8) and (2.10) we know that

R

"

|ﬁ|+

Since ¢€ (0, 1) is arbitrary, we have actually obtained that

limsupn 'R, <liminfm~'R,,

n— o n— o

which proves that the limit lim, . (R,/n) exists. Hence, lim, _ ,.(R,/n)
exists. By Lemma 2.1 we know for some constant J € (0, co) that

R, = 0n, Vn=1

Thus, we know by (2.9) that lim,_, ., #n 'R, €(0, ). |
To get a more precise estimate for R,, we first prove a lemma.

Lemma 2.5. For any given f#0 there is a constant C,, € (0, o)
such that

R 1
W) —<c, B wnz2
n n

Proof. By (2.7) we know that if m>1 is large enough,

]

st n (211)
m m
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For any given n>=m there is a constant k(»n) = 1 such that

ﬁ(zk(n)n) 1
—_—— S_
’v(ﬁ) 2Kmy n
Thus, by (2.11) we have
R, R@2*m) R, 1
(ﬁ)__z\ P, T th
ko R(2Iy  RQ27'm)\ 11
< AL o -~
El ( 2'n 2i71n >+n n
which implies, by the relation between R, and R, that
R, log n
W) —=E<O(1) ===

n

if n>1 is large enough. This completes the proof. ||

Having these preparations, we can easily prove the main result in this
section.

Proposition 2.6. For any given f+#0 there is a constant
C,»€(0, o0) such that

W(B)—n"'R,| < C,n"'logn, Vn=2

Proposition 2.6 is much more precise than Lemma 2.4. By means of
Proposition 2.6 one can give a precise estimate on the partition function
Z'%" 1t seems possible that the bound n~! log n given in Proposition 2.6
can be replaced by n~".

Proof. By Lemma 2.5 we need only to show

W By — R> Cplogn

n

Ynz=2

Let
=Elog Z©om

By a similar argument as in the proof of Lemma 2.5, we can show that
there is a constant V()€ (0, o) such that ¥ ) =lim, _, . (R, /n) and

R 1
Y L Z
v B) P Cl3n
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for some constant C;€(0, c0). Thus, it suffices to prove

R,—R 1
|Rn nlso(l) Ogn,
n n

Vnz2 (2.12)

By a similar argument as in the proof of Lemma 2.2, we can show that for
any given M > 1 there is a constant K> 1 such that

P <E exp <ﬂ Y b,~U(S,~)> Lis, 2oy ;nKZ(o.n))

i=1

<O0(l)n™™, VxeZ' (2.13)

Thus, there is a constant K, > 1 such that

P <Eexp <ﬁ z bi U(S:)> I{S,,#O} >77K0+lz(0'")>

i=1

<0O(l)n~?, Vnx=1
Using this, we can show that

R, < Elog((n®™*'+ 1) Z®" 4+ 0(1)n~"
<R,+0(1)logn

It is clear that R, < R,. Thus, we obtain the desired estimate (2.12). The
proof of Proposition 2.6 is then complete. ||

Remark. It would be very interesting to give an expression for the
exponent v(f) in terms of B In fact, one can easily show that
lim gz _ . w(8)/18l =1, and w(B) < %2 if |B| >0 is sufficiently small.

3. A REASONABLE BOUND FOR THE VARIANCE

By a similar argument as for R, given in Section 2 we can also show
that the limit lim,_ . n~' Var(log Z‘“™) exists (see, e.g., the proof of
Lemma 4.1 below). However, we need to show that this limit is finite and
positive. To this end, in this section we first derive a reasonable bound for
the variance of the free energy [i.e., Var(log Z‘“")]. The main result in this
section is as follows.

Proposition 3.1. Let f#0; then there is a constant C,€(0,1]
such that

C,n< Var(log Z®") < C; ', Vnz2

822/83;3.4-20
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Wehr and Aizenman''!’ already derived a reasonable bound for the
variance of an extensive quantity (ref. 11, Definition 2.1). They also proved
that the free energies of some disordered systems are indeed extensive
quantities in their sense. Unfortunately, we were not able to find a random
variable B, for the system discussed in the present paper such that the con-
ditions (2.2) and (2.4) in ref. 11 are satisfied. In other words, we were not
able to prove in this way that the free energy log Z'®" is an extensive
quantity in the sense of ref. 11 Definition 2.1. The main result in ref. 11 (i.e.,
Theorem 2.3} thus cannot be used directly to prove Proposition 3.1 above
(or Lemma 4.1 below), but some ideas given in the proof of ref 11,
Theorem 2.3, can be borrowed to prove Proposition 3.1 above.

For convenience, we set /,=[n/M], where M >1 is large enough.
Without loss of generality we may assume /,=n/M. We introduce some
notations, which correspond to those of ref. 11:

M

v,= Z bjU(Sj), i=1l..1,
J=lGi—M+1
Fin =U{bu‘—nM+|~~~-a biM}v i=1..,1,
and
yi(n"”( U {blj—I)M+lv--v bjM}>
Vil j#i
Let
Yi.nzg(log Z(O.“'/'g:i’.n)
and
Zi‘n(b(i— VAf - 1o bl'l\fl) = E(log Zlov")/'g‘:,n}
Then

M
Z, (1), tyy) = Elog Eexp <ﬂ Y v+ B Y tjU(SH(,_,,M)

Isj<hj+#i i=1

For convenience, the random variable Z, ,(b,;_\,p 41+ Djar) Is sometimes
briefly denoted by Z,,. Let {a,},., and {a,},., be independent with
respect to a probability measure P’ and have the same distribution as
{b,},> with respect to P. Then we can show that
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1 )
Var(Z;,) =§ ENZ, (@i 1yara 1o @ipg) = Zi A1 1 yar s 100 Qiag))”
_l - Eexp(ﬁz]<1<’,,j#ll/l +ﬁ ! (:—l)M—(-la U(Sj)) ?
=—FE'| Elog L
2 Eexp(ﬂZl il j#i 'z/j+ﬂzj=(,_])M+]aj U(Sj))

(3.1)

where E' is the expectation with respect to P’. Let us first prove a lemma.
Lemma 3.2. We have the following relation:
I Iy
Y, Var(Z,,) < Var(log Z'*") < Y Var(Y,,)

i=1 i=1

Proof. We only give a sketch of the proof (for more details, the
reader is referred to the proof of ref 11, Proposition 3.1). Define the map

Q; by
Qi log Z(O.n) (log Z(O nb/ '“
Let

2=110, %=1
J=1

Then one can show that

Zi.u = H Q_i log Z(O'”)

V<jisly j#i

and
E(% ]Og Z(O.m _'%—l lOg ZlO.n))({j}}log Z(O.n( _gﬁ_l log Z(O,n)) :0’ l?/:_]

Using these results, we obtain that

Var(Z;,)= E( H Q,(I-Q,) log ZlO.n)>_

Vi<l j#i

and

Var(log Z(O,n)) E((% . %) log Z(O,n))z

E( P _(I—Q;) log Z%M)?

It

1M ﬁ[\/]w
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Using the Holder inequality for conditional expectations, we have

I‘[ Qj(I_ Q_[) log Z(0n) )

1<jghj#i

E

<E

I’I Qj(I_ Q.) lOg Z(O.n) )

1<j<l—1,j#i

E|2_,(1—0Q,) log Z*"|?

Therefore

Iy

Z Var(Z,,) < Var(log Z'*")

which proves the lower bound. By a similar argument we can prove the
upper bound. |

In Lemma 3.2 we may choose /,=[M~'n]. It is easy to show that
{Var(Y,,)} is bounded (see the proof of Proposition 3.1 below). Thus we
can easily get the upper bound asserted in Proposition 3.1 from Lemma 3.2.
To get the lower bound from Lemma 3.2, we have to prove that Var(Z,,)
has a uniform lower bound. For this purpose we let {7,},., and {1} ,5,
be two special sequences:

tk=1’ zlzk_1=—1, t’zk—_—l, Vk>1

Let us first prove two lemmas.

Lemma 3.3. For any given 8 #0 the following holds for any xe Z":

M

Bvexp (B X 115 )< O(1) exp( |l M7
j=1

Proof. Let g, =inf{j>1: §;=0} and ¢,=sup{j<M: §;=0}. Since

|27 i <1, Vuz1, by the deﬁmtlons of o, and o, we have

M
E exp </3 ) t,’-U(S_,-)>

j=1

=E~\‘I{01<M‘az>1§ €Xp (.B Z tjl‘U(Sj)>
j=0oy+1
J N o
X exp <ﬁ Y ux)+g Y, r;.U(y)>+eXp (ﬂ y z;U(x))
f=1

j=o1+1 Jj=1

<ef+ e max Eexp(ﬂZlUS))I{S, o)

I<isM
i J—
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If i < M2, then [since ¢, U(S;) < 1]

Eexp <ﬂ 5 z;u<s,>><exp(|ﬁ| Mp)

j=1

We now assume M >i>M/2and set L,;=3"_, Iis,—oy- If L; > /2, then we
also have

Eexp (8 T 4US) )< Eexpl1f i2) <exp(lfl M72)
j=1
Now suppose L;<i/2 and set
{s(1),... (L))} = {j<i: §;=0}, 5(0)=0
It is clear that
US))=U(Sse 1), Jelso)+1,s(v+1)~1]

By the definition of {r;},., we know that

ste+1)
Y Lus)

J=s(v)+1

<1

Thus

L; s(v)

2 X Lus)
v=1 j=s(e—1)+1

L

<X

v=1]

IIRAUCH)
J=1

s(e)
Y Lus)

j=sto—1)+1

<L, <M)2

In all cases we have

i

Eexp (,B Y tj'-U(Sj)><exp(|ﬁ| M/2)
f=1

i=
which proves the desired result.

Lemma 3.4. For any given f#0 the following holds:

M
E_.exp (ﬂ Z l; U(S)) I{SM=_V}

j=1

> 0(1) M~ exp(1Bl (M =2 |x| =2 |y]) 27~ (3.2)
if |x| + || <M and the left-hand side of (3.2) is positive.



592 Albeverio and Zhou

By (3.2) we known that if |x| 4 |y| is less than eM with g€ (0, 1/16),
then the left-hand side (lh.s.) of (3.2) is bigger than exp(3 |f] M/4). The
idea to prove (3.2) is also simple. To get a lower bound for the Lhs. of
(3.2), we only need to consider some special path of the random walk {S;}
(e.g, the path {S,=x—Ux),..,Sy_1=Ukx), S4y=0 Sy_,=0,..,
Su_1=y=Uy), Su=r})

Proof. We assume that the Lh.s. of (3.2) is positive. Without loss of

generality we may assume >0 and x, y#0. It is easy to see from the
Markov property of {S;} that

M
E_.exp <ﬂ z g U(Sj)> I{SM=)'}

i=1

M—|y| x| M
>E_\.[exp (ﬁ Y, LUSH+B Y U+ B Y tjU(y)>
Jj=1

J=Ix|+1 = Jj=M—|yl+1

X I{ St =X = U(xX)ery Spy| =1 = UIX). S|y = 0; Sas— 1) = 0seeee Sar— 1 =y — Ul w). Sy =.\'¥j|

M|yl — x|

> 2 W=lp—AIx - g exp (ﬁ Z Lyl U(Sj)> I{S:\I—L\l—l_rl —o)

=1

(3.3)

Let t.=inf{i>1: S§;=z} and y,=inf{m>1: |S,,| = k}. Both . and y, are
stopping times. It is easy to show that

P\(ygny <To) = O(1) m =
By the symmetry property of {S;} we have

P(S,>0...S,,>0)

n

=Y PS,>0,..,S,_,>0,S,=x)

x=1

>P(S,>0,.,5,>0 max S,<m*)

1<igsm

\%
t—

Pl(y[1113/4] < TO)

=>0(1)ym=*
This proves that there is x,e [ 1, m] such that

P(S,>0,.,S,,_,>0,S,=x5)=0(1)m~' ¥
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By the Markov property of {S;} we can show that
P(S,>0,..,85,_1>0,5,,=0)

=Y P(5,>0,..8,=X8,,,>0,.,8,,=0)

x=1

S P(S,>0,., 5, =X) P(S,> =X,y Sy > =X, S, = —X)
N=1
=3y PY$,>0..S5,_,>0,8,=x)

x=1

;PZ(Sl >Oa~-~a Sm—l >O’ Sm=x0)
>0\ Yym™ "7
By (3.3} we know that
M
E. . exp (ﬁ Z ;U S,-)) I{s,,"=y}

J=1
227 Wl =AW =PI exp( B(M — | y| ~ |x| = 1)

X P(S‘ > 0,..., SA(!,_L‘,!_!XI_] >0, S/W"',"}_If"l =’—0)
= O(1){(M— lyl _ lxl)—7/22—l.v|~|.v|e/J<M—2 IXI=2y-1

which proves the desired result. |

Let
iM
¢,(i)=Eexp<ﬁ Y WU+ p 3 tjU(Sj)>
IEVES WAL J=ti—-hHM+1
and
iM
¢2(i)=Eexp</} Y v,+B Y t}U(Sj)>
Vil j#i J=ti—1yM+1

Lemma 3.5. For any given ##0 there are constants d,, ¢, (0, c0)
such that

P, (1) <<exp(d, M) ¢-(1)) < O(1)exp(~d, M), V¥nz1l, YM>=I
Before proving Lemma 3.5, let us remark that from Lemmas 3.3 and

34 we can expect that the inequality

M

M
Eexp(f 3 0 U(S,)) <e~IMMHE exp (ﬁ 34U S») Iisymn
=1

j= k=1
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holds, which is heuristically at least compatible with the conclusion of
Lemma 3.5. However, the rigorous proof of Lemma 3.5 still involves some
more complicated computations, as we shall now see.

Proof. Since S;_a, Siv€Z', by the Markov property we know
that

i—1
¢2(i)= Z ECXP<ﬁZ ‘lbj>1l$u-|)1u=-\‘}
j=1

x. reZ!

M
x E, exp <ﬁ Y t}+u_nMU(Sj)>

j=1

n—iM
XE_\' €xXp <ﬁ Z bj+iMU(Sj)>
=1

j=

We remark that there are constants d,, d,>0 such that (see the proof of
Lemma 2.2)

B j j
P(exp </>’ Y b,-U(_\')) exp(d;j) = E exp (ﬁ Y b,-U(S,-)) I{S,:o})
(=1

i=1

i=

< O(1) exp(—0d4))

if j=1 is even. Thus, as in the derivation of (2.5), we can show that there
are constants ds, d¢ € (0, c0) such that

P(A4,(x)) < O(1) exp( — 5 |x])
P(B(y)) < O(1) exp(—d6 | y|)
if (i—1)M is even, where
-1

A,~(x)={Eexp <ﬁ Z l//j> I{Su—uu=—\'}

Jj=1
i—1
>exp( _‘65 |x|) Eexp <ﬂ Z lpj) [{S(,‘_|)M=O}}
j=1
n—iM
B,-(y)={E_vexp (5 2 bivim U(S,-)>
j=1

n—iM
=exp(—ds | y|) Eexp (ﬂ Y b]+iMU(SJ')>}
=1

Jj=
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Therefore, there is §,€(0, o) such that

f’( U A,-(x)uB,(y))SO(l)exp(—57£M), Vee(0,1)

Ixf, |yl =eM

If the following event has occurred

N Ai(x) N Bi(y) (34)

IxX| = eM, |y| zeM

by Lemma 3.3 it follows that

i—1
¢2(i)$0(1) Z Eexp <ﬁ Z WJ) I{S<i—1)nl=-\'}

Ix|, |yl <eM Jj=1
n—iM

xexp(Ifl MP2) E <ﬁZ iy

+0(1) Z Eexp <ﬂ Z ll’_/) I{Su‘—nM=«\‘}

xeZ' |ylzeM j=1
n—iM

xexp(|B] M/2) exp( =35 |y]) Eexp(ﬂ 5 ,+,MU(S,))

Jj=1

i~1
+ 0(1) Z Eexp <ﬁ Z llfj) I{Su_|w=0}
j=1

|x|zeM, |yl <eM
n—iM

x exp( —3s |x]) exp(1B] M/2)E, exp </f S by U(S,-))

j=1

i—-1
O(I)exP(lﬁl M/2)E6Xp <ﬁ Z lp/> I“Sli-l)M|<EM}
i=1

n—iM
X Y Eexp<,B Z +,MUS)>

|y <eM

By Lemma 34 we know that if ee(0, |Bl) is sufficiently small and
|x[, | y] <&M, then

M
Evexp (8 T U(S)) 15,01 > OU1) exp(3 61 M)

Jj=1

Hence, if the event (3.4) has occurred, by the Markov property of {S;}
we get
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CERD) Eexp(ﬂiil n//,->1{s.,._.,ﬂ,=.\-}

Ixly Iyl seM j=1

M

x E* exp <ﬁ Z Liii- l)MU(Sj)> Lisy=n

j=1
n—iM

x E, exp </)’ Y b U(Sj))
j=|

= 0(1 Eexp< Z >1<|s(, nal <eM}

n—iM
xexp(3 || M/4) Y Eexp(ﬁ L b +,-MU(S,)>

|v|<eM

2 O(1) exp(|B| M/4) (i)
Using this, we prove that there is a constant C, e (0, c0) such that

P(¢,(i) < Cyexp(|B| M/4) ¢o(i))

<P< U A,-(x)uB,~<y)>

Ixl, vl = eM

< O(1) exp(—48,eM)
which implies the desired result. |

By Lemma 3.5 we then know that Var(Z;,) has a uniform lower
bound. We are now in a position to complete the proof of Proposition 3.1.

Proof of Proposition 3.7. Let

¢(i) = (E log ¢,(i)/(i))

By definition we know that
16.1(1)/9:(1) < (E log exp(2BM))* = (2M)?
By Holder’s inequality and Lemma 3.5 we have
(ET gy < expion w1y 108 91(1)/82(1))7 < O(1) exp( —3, M/4)
which implies the following, provided M >1 is large enough:
$(i) = — C; exp(—3, M/4)

+ %[Elwn(i);exp(é.M).j:zu)} log(¢,(i)/¢4(1))]?
2 O(1)M — Cyexp(—9,M/4) = C,
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for some constants C5, C,& (0, c0). By (3.1) and Lemma 3.2 we know that
if M =1 is large enough

In
Var(log Z®™) = Y Var(Z,,)
i=1
In
>3 Z EII{aI.=r/.,aI'.=r}.(i—|)M+lsj<iM} é(i)
=1

In
2127M2=M N $(i)= O(1)n

i=1

which proves the lower bound.
Now it remains to show (by Lemma 3.2)

Var(Y,,)<0(1), i=1,.1, (3.5)

Without loss of generality, we may prove (3.5) only for i = 1. By the defini-
tion of Y, , we have

M n
Y, ,=E'log Eexp <ﬁ Y q;USH)+B ) be(Si)>
i=1 i=M+1
In this case we have

exp(— |8 M) E exp <ﬁ 5 biU<s,->)

i=M+1

M n
<Eexp(ﬂzu,-U(S,-)+ﬁ 5 biU(Si))

i=1 i=M+1

sexp(IBIM)Eexp</3 )y biU(Si)>

i=M+]

for any given u,.., uy, € { —1, 1}. Hence,

y ¥, —log Eexp (ﬂ T b, U(S.-))‘ <IBl M

i=M+1

which implies
E|EY,,— Y, I*<0(1) |B)> M?

This then completes the proof of (3.5). |
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4. CENTRAL LIMIT THEOREM

The main aim of this section is to prove that the central limit theorem
holds for the free energy (see Theorem 4.4 below). To get this limit
theorem, we will first derive a reasonable estimate on the fourth moment
of the free energy, and then prove that the free energy can be expressed
asymptotically as the sum of some independent identically distributed
random variables. Using the estimate on the fourth moment of the free
energy, we can show that the Lindeberg condition is fuifilled for this
system, and then get the central limit theorem. To this end, let us first
prove two lemmas. Lemma 4.1 below concerns the behavior of the variance
of the free energy. Proposition 3.1 given before will be used in the proof of
Lemma 4.1. Lemma 4.2 below will be used to verify that the Lindeberg con-
dition is satisfied for this system.

Lemma 4.1. For any given f+0 there is a constant y(f)e (0, o)
such that

(0.1}
lim Var(log Z'*"")

n— % n

=y(f)

where Var(log Z'*") = E(log Z'*" — E log Z'%™)2,

The main idea to prove this lemma is the same as the one given in the
proof of Lemma 2.4, where lim,, _, . (R,/n) has been proven to exist. We
will prove that Var(log Z'>"’) has asymptotically a subadditive property,
which implies the desired conclusion.

Proof. Let
&, =log Z‘°~’”—Elog Z0.m)

and r, = E&2. For any given a e (0, 1) we let m satisfy n* <m < n. From the
proof of Lemma 2.3 we see that there is a constant K, > 1 such that

1'5 <Z(0,u+nn > nfozonp exp <,B Z bi+n U(S,)>> < 0(1)"—4
i=1
In other words, we have

P <log Z\0u+ ) > log pfoz0m log E exp <ﬁ Z bi+" U(S,)>>

i=1

<Oo(l)yn—* (4.1)
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By (2.13) we know that there is a constant K, € (0, c0) such that
P <Eexp <ﬁ Y b,U(S,-)) Iis, 20 211’“2‘“’”) <Oo(l)yn™*
i=1

where Z'“" was defined at the beginning of Section 2. Using this, we
show that

Elog Z'*" < Elog((n® + 1) Z'%m)

+0(1)nP (E exp <,B Y b,U(Si)> s coy > ,,Klz(o.m>

i=1

< O(1)log n+ Elog Z%™
which implies

Elog Z"+™ > Elog Z" + E log E exp </)’ Y b, U( )>

i=1

—C,logn+Elog Z*" + Elog Z'*™

for some constant C, (0, oc). Let

nt

& (n) =log E exp <ﬂ Y b,,.:U S))—-Elog Eexp <,B i b,,+,-U(S,-)>

i=1 i=1
By (4.1) we have
P(¢, m=Kologn+C logn+¢&,+&,(n)<0(1)n~*
Similarly, we prove that

P(éll+l!l ~ KO log n— C log n + éll + él”(" ) ( 1 ) ’1_4

for some constants Ky, C’e(O,co) It is clear that ¢&,<|fln and
E¢,=E& (n)=0. Since &, and &' (n) are independent, we get

Ec;,,,<O()(log )+ O(1) log n(E |¢,] + E |&,(m]) + B2+ E(&,,(m)?
By Proposition 3.1 we know that
Ee2 . <O()n'?logn+ EE2+ E(&,(n))?
Thus there is a constant C, e (0, c0) such that

n+m\C"nl/_ ]Og n+’n+r1n (42)
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We now use the approach given in the proof of Lemma 2.4 to prove
that the following limit exists:

Jlim ’—;’=y(/x) (4.3)

Let
F,=Cn"?logn+r,
One can easily show that for any given de(0, 1) there is a large constant

my 2= 1 such that

12

(n+m)'”log(n+m)<n'?logn+m'”logm
g

if n° v my <m<n and m>m,. Using this, we get
F" +n < F'l + F"l

if v my<m<n Thus, by a similar argument as in the proof of
Lemma 2.4 we show that (4.3) is indeed true. By Proposition 3.1 we know
that p(f) is finite and positive. |[I

As mentioned before, we will prove that the Lindeberg condition is
fulfilled for the present system. To do so, we first derive a reasonable
estimate on the fourth moment of the free energy.

Lemma 4.2. There is a constant Cse (0, oo) such that
E(log Z(O.n)_Elog Z(O,n))‘ig Csnl (4.4)

It is not easy to give a direct estimate for the fourth moment of the
centered free energy. The proof of Lemma 4.2 given below will be divided
into two steps. First we will prove that the desired estimate holds for
n=2". For this purpose we set

&, = 2 _Z"'E(log Z(O.l’") _ E‘ log Z(O‘Z'll))4

We will derive an estimate of «,, in terms of «, _, and then use this
estimate to prove the boundedness of the sequence {a,,}. Second we shall
give an estimate for the fourth moment of the centered free energy in terms
of the sequence {«,,}. To do so we need some further considerations.

Proof. From the argument given before we see that there is a
constant Cge[ 1, o) such that

2E log Z(O,z""') _ C6—lm gE‘log Z(O,er’) < CGm +2E log Z(O'?""—I)
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and

am—1
P(log Z02 <log Z1%2"™Y 4 log E exp <ﬂ Y bi+2,.._|U(Si)>—Cg‘m>

i=1

2m - 1
+P<10gZ(0 7"')>logz1() m= ')+10gEeXp <ﬂ Z b,+7m IU( )>+C n7>

i=1

< 0(1) 2—4m

Let

qm—1

N1 =log Z*¥""" 4 log E exp <ﬁ Y bipam U(Si)> —2F log Zz®>"™"

i=1
Then we show that

E(lOg Z(O.Z"’) _ E‘ lOg Z(O.l’"))A
SO(1)+ E(|1,_ 1| + O(1)m)*

4

SE|’7m—1|4'{"0(1) Z miElﬂm—ll“_i

i=

-

SE |, |t +0(1) Y m'(E |, _, |- (4.5)

i=1

Since log Z'%2"™" and log Eexp(f 32" b, ,m-1U(S,)) are independent

i=1

and have the same distribution, we have

E |'7m—l|4 < 2E |10g Z(()_'_;m-l) - Elog Z(O«Z"'_')lli
1)(E [log Z®*" ™" — Elog 22" ™1|2)?
< 222(m— 1 )am—l + 0( 1 ) 22(m— 1)

Hence, by (4.5) we can show that there are constants e e (0, 1/2), mg=> 1,
and C, e (0, oo such that

m\( +£)(X,,,_|+C7, Vm>mo
By this we know that for some constant Cge(0, o0)
LIRS CS’ vm 2 1

In other words, (4.4) holds for n=2", Vm > 1.
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We now prove that (4.4) holds for all n21. As in the proof of
Lemma 2.4, we show that for any n>1 there are ..., [, € {0, 1} such that
l,=1and

k
n=Y 12
i=0

Let u=max{i<k—1: =1} and m,=XY_,/2" It is clear that
n=2%4+m,. If u<k/2, then

E(log Z*" — E log Z'>")*
2k

4
< 0(1)E<log Eexp <ﬂ Z bivm, U(S’_)> —Elog Z(o,zk)>

i=1
+ O(1)(log n)* + O(1) E(log Z!®my4
<0(1) E(log Z'*? — Elog Z'*2)* + O(1)((log n)* + m*)
< O(1)(2% + (log n)* + 2%)
<0(1) n?

Hence, (4.4) holds in this case.
We now assume u > k/2 and prove the desired result [ie. (4.4)] by
induction on k. Clearly,

nf<m,<n
if 221 is large enough. Let

¢y(n) =log Z0m — Elog Z'0-mw)

2k 9k
CZ(") = lOg Eexp <ﬁ Z bi+m,, U(S:)> —Elog Eexp (ﬁ Z bi+mu U(SI)>

i=1 i=1

As an induction assumption, we may assume that
ElL(ml*< K- 2%

for some constant K > 1 whose value will be specified below, By a similar
argument as in the derivation of (4.5) we can show that

E l]og ZWom E]Og ZiO,n),4

4
SE ) +Gm)* 4+ 0(1) Y (og n) (B [¢,(n) +Ca(m)| 474 (4.6)

i=1
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If E12,(n)|* < ME |{5(n)|* for some M > 1, then
Lh.s. of (4.6) < O(1) E |£,(n)|* < O(1) n*

We now assume E |¢,(n)|* = ME |{4(n)|*, where M>1 will be specified
below. Then

E |C1(’7)+C2(")|4=E |{1(")|4+E |Cz(”)|4+6E |Cl(")|2 E |C2(”)|2

1 +6MV2\
s(l ++T>Elcl(n>|“

Therefore, for any given ¢e (0, 1) there is M, > 1 such that
Lhs. of (4.6) < (1+¢)E |¢,(n)]*

if n>1 is large enough and E |{,(n)|* = M, E |{,(n)|*. Using this, we can
show that there is a constant Cy € (0, c0) such that Lh.s. of (4.6) is less than

(14+&)E 1 (m)|*+ Con* < (1 + &) K- 2% + Cyn®
<IK. 2% 4+4C2%
By letting K=8C, we then obtain that
E |log Z'%%+m _ Elog Z(0-2 +mi|4 g K. 2%

which proves the desired result. |

As a corollary to Lemma 4.2 we get a strong law of large numbers for
log Z!%™.

Corollary 4.3. The following strong law of large numbers holds:

log Z‘°"”_ -~

lim ae-P

now V(B
Proof. By Lemma 4.2 we know that

4

{0.11)
log Z <0(l)n?

Elog Z©m B

By the Borel-Cantelli lemma we see that

lim 0 ae-P

n— o

log Z(O.n) 1 ‘
Elog Z*m

Thus, we get the desired result from Proposition 2.6. ||

822/83/3-4-21
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Having Lemmas 4.1 and 4.2, we can now prove the central limit
theorem for the free energy.

Theorem 4.4. For any given §#0 we have the following results:

log Z(O.n) . V(ﬁ)l'l o
WB)Pn'? — N(O, 1), 1~ o0

log Z'% —2y(f)n o
— 0, >
e MO D e

where 2 represents the weak convergence, N(0, 1) is a random variable
with the standard normal distribution, and v(8) and y(8) were determined
respectively in Lemmas 2.4 and 4.1.

Proof. Let aye(1/2,1). Without loss of generality, we may assume
n*=[n*] is even, and n = u,n* for some integer u, > 1. Let

n%

8,=Eexp (ﬁ 2 by 1)n%0 + U(Sj)> — Elog !>
J=1
Clearly, 0,,.., 0, are iid., and u,= O(n' ~*). By Lemma 4.1 we know that
EG}=y(py (1 +0(1)), n-owo
and so
Var<z 49;):}»([3)11(1-%0(1)), - o
i=1

By Lemma 4.2 we know that the following holds for any given £ (0, 1):

1 Un 1 1 ty
EO L 0y 5 enpminy S—— ——— 3. E6?
im0 vy <5y X,

<O()yn=2 ) n*>

i=1

<O0(l)yu;'

which goes to zero as n— co (the above property is called Lindeberg’s
condition). Hence, the following central limit theorem holds (see the proof
of ref. 7, Theorem 4.5):

by

g o
=171 @
Var AT 0) NO. D), n— oo
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Let
§i=10g Zgio—nn%.mm_Elog ZB(B—l)n“O,in"iO)
By (2.13) we have
E10,—8)*<0(1)(log n)?

and so

Uy

E|Y (6,-6)

i=1

"< O(1)(log n)?u?

As in the proof of Lemma 2.2 we can also show that there is a constant
K, =1 such that

1")' 01 Zanz((i—l)n“O_in“O)) < o(1 n—4
i 0,0

where

n*o
0. —maxE exp <ﬂ Y byl 1y UGS, ))

Jj=1
By definition we know that

uy ty
(ti = 1)n®0, in*0) (0,n) !
[Tz <zon< [ g

i=1 i=1
Then we have

Uy

E|log Z®%" — Elog Z®"™ — Z g, <0(1) log n)%u

Therefore,

E ]og Z(O.n)_E‘log Z(0.m _ Z 0

i=1

< O(1)(log n)* u} < O(1) n*' ~*(log n)?

Using this, we get

log Z*" — E log Z'*™
yp)n)'”?

£, N0,1), n-oow
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By Proposition 2.6 we know that
|Elog Z'%™ —y(B)n| < O(1) logn
From this we easily get

log Z'*" —v(f)n «
y(ﬂ)l/.‘!nl/z — N(0, 1), n— o

Similarly, we can get the other weak convergence asserted in this theorem,
and the proof of Theorem 4.4 is then complete. ||

As a corollary to Theorem 4.4 and Proposition 2.6, we have the
following estimate on the partition function.

Corollary 4.5. For any given 0 and x, <x,, we have

lim P(exp(x,p(B)/*n'?) < ZOme "B L exp(x,y(B) P n'?))

n— x

=(2m)~'” IXZ exp (— l);—> dy

Ry

5. RECURRENCE

From now on we discuss the sample path properties of the random
walk {S;} under the probability measure P'"). In this section we first
consider a property which is related to recurrence. Let 74(n) =0,

t(n)=inf{m>1,_(n): S,,=0} An, i=1,2,.

7, i=0,1,2,.., are stopping times. It is easy to show that
4,=max, o;_.(t,(n)—1,_,(n)), where 4, was defined in Section 1. Before
stating the main result in this section, let us first prove the existence of
an exponent u(f) describing the behavior of 4, (see Lemma 5.2 and
Theorem 5.3 below). For this purpose we prove two lemmas.

Lemma 5.1. For any given f#0 and ¢e(0, 1) the following is

always true:
> b))

i=1

Z(O.zn) Zé’_m exp (lﬂl

if n>1 is large enough, where Z(%"

Section 2.
Although this lemma is simple to prove, it already implies that the
exponent u(f) given in the next lemma is positive.

was defined at the beginning of
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Proof. For any given M > 1, by (2.1) and (2.3) we know that there
is a constant C, €(0, c0), which is independent of M > 1, such that

n M
ZOnM) 1—[ <C1M—2exp(’ﬂ Z b,~’>>
i=1

i=1
nM
>((C M—Z)I/M nMexp< /)) Z b, ’>

Thus we get the desired result by letting M >1 be large enough [e.g.,
(CIM=2)Mzee]. |

Lemma 5.2. Let

2n—1

—1
Y,,<j>=logE<Eexp</f 5 b,-(U(Si)+j>> 1@.:0}) =11

i=1

n —1
Vi =togE(Eew(§ Y, a0s)+0)) . =1 -1

i=1
For any given f#0 there is a constant u(f) e (0, o) such that
lim (2n) ' Y, (j) = 11m n"Y,, =—ulp), Jj=-11

As in the proof of Lemma2.3, it is easy to show that Y, has
asymptotically a subadditive property. Using this property, one can easily
prove the existence of the exponent (). By Theorem 4.4 we can then
easily deduce that the exponent u(f) is finite. By Lemma 5.1 we then
succeed in proving that u(f) is also positive.

Proof. By the symmetry properties of {b,},5, and {S,},, we know
that Y,(1)=Y,(—1). By considering the special paths with {S,, =0} and
the Markov property we have that for any given n, m>1

2n -1
Y,,+,,,(1)<]0gE<ECXp (ﬁ Z bl( U(S,)+ 1)> I{SZH=0}>

i=1

2Zm—1 -1
)E <Eexp <,B Z b2n+i( U(Sl) + 1)> I{Sbu=0}>

i=1
2n—1 —1
SlogE(Eexp <ﬂ Z bI(U(SI)+1)> I{SZ::=0}> +10g Ee_ﬁbz"
i=1
- 2m—1 -1
+log £ (E exp <ﬂ Y o (UGS + 1)) I{S,J,,ﬂ,})
i=1

SY )+ Y, (1)+3e ?+ef)
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As in the proof of Lemma 2.4, we can show that there is a constant u(f)
such that

lim 2n) "' Y (1) = —u(B)

n— o

We now prove u(f) € (0, o). Indeed, by Theorem 4.4 we have that the
following also holds:

log Eexp(B X7 b, U(S)) I {5,=0) —2v(f)n
P B)'\2(2n)'7?

Hence, there are a constant M, >1 and a subset 3, c @ with P(3,)>3/4
such that

Z,NO,1), n-oow

2n—1
Eexp <ﬂ > b,.U(S,.))]{SDFO}gexp[va(ﬂ)+M1y(ﬂ)'/3n'/2]

i=1
if @, has occurred. We also know that there are a constant M,>1 and a
subset 2, c & with P($,) > 3/4 such that
exp (B 3 b, ) <exp(at; 18 n'7)
i=1
if @, has occurred. Using these inequalities, we get
Y,(1)>log El, g, exp[ —2v(B)n— M, y(8)'*n'? — M, | f| n'"]
=2v(Byn— M v(B)'Pn'> — M, |B| n'* —log 2
which implies

wp) < vif)< oo, VB e R'\{0}

On the other hand, by Lemma 2.1 we know that there are constants
J,, 9, >0 such that

P(Z'%* < exp(d,n)) < O(1) exp( —6,n) (5.1)

By a large-deviation result we know that there is a constant &€ (0, o)
such that

2n

‘>6,n/2> O(1) exp(—9d;n)
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Thus, by Lemma 5.1 and (5.1) we obtain

2n—1

-1
E(Eexp <ﬁ Y b(US)+ 1)> I{S,_"=0,>

i=1

2n —1
<2E <Z‘°‘3’” exp <ﬂ Y b,>>

i=1

2n —1
<2E1{2‘0~1’"<exp(0’|n)} <Z(O'2") eXp <ﬂ Z bi)>

i=]

2n

+2P <Z‘°’2"’ >exp(d,n),expfi Y, b,-> <exp((5,n/2)) exp(—6,n/2)

i=1

2n —1
+2E1{cxp(/32,:'='|b,)zexpm'.n/z); <Z(O'2")CXP <,3 Z bi>>

i=1
< O(1) exp(en—3d,n)+2 exp(— 3,n)

2n

+O(1)exp(sn)13< ') b,‘}é,n/Z)

i—1
< O(1) exp(en) exp(—d, A d3n) +2exp(—0,n/2)
<O(1)exp(— 38, A d, A d3n)

if e€(0, 16, A 85) and n>1 is large enough. Using this, we obtain that

Y (1)< =36, A0, Ad;3n

which leads to u(B) =135, A 6, A d;>0.
It is clear that Y, (1) > Y%,_,(1). By Lemma 5.1 we can show that for
any given ¢€(0, 1) there is a constant C, €(0, o0) such that

Y3, 1(1)2log Gy —en+ Y,(1)
if n>1 is large enough. Since ¢ > 0 is arbitrary, we have

lim (n)~' Y3, (1)= lim (2n) =" Y (1)

On the other hand, it is easy to show that

lim n='Y(1)= lim (2n) ' Y3,_ (1),

n— H— o

which proves the desired result. ||



610 Albeverio and Zhou

Remark. We already proved that
wpysvip), Vg#0

It would also be very interesting to give an expression for y(f) in terms

of j.
Our main theorem concerning the behavior of 4, as n— o0 is as
follows.

Theorem 5.3. For any given f+#0 and e (0, u(f)). we have

PO((logn)~" 4, e [(w(B)+&) ", (u(f)—&) ' N -1,  n-ooo
where y(f) was defined in Lemma 5.2.

The proof of Theorem 5.3 is very involved. We will divide it into two
steps. First we will prove

PO Y(logn)~' 4, <(u(f)—e)" ) —>1, n-w

This part can be easily proven by using the definition of u(f) given in
Lemma 5.2. Lemma 5.4 below will deal with this part. Unfortunately, the
other part of the proof of Theorem 5.3 is not so easy; in fact a lot of com-
putation will be involved in the proof of this part (see Lemmas 5.5 and 5.6
below).
Let o,=inf{m>i: S, =0} A n—i. Then o, is a stopping time.
Lemma 5.4. For any given f#0 and ee (0, u(f)),
EPO™(S.=0,0,> (u(B)—e) "' logn)

LO(l)yp~t=Ep—at G| p Ynx1 (5.2)

Proof. It suffices to prove the above estimate for
i<n—[(u(B)—e) 'logn]. We remark that if ¢,=j, then U(S,)=--- =
U(S;_,) #0. Using again the Markov property, we can show that

EI{S,-=0.:7;>(/4(/3)—5)"logn} exp <ﬂ z b_/U(Sj)>
j=1

n—i

< Z Eexp <ﬁ Z ka(Sk)) Iis,— oy
J={(u(pry—e)""log n] k=1
j—1
x Eexp <ﬂ Z b,.,; US,) I{s,:o‘ US1) = --- = ULSj_|) #0}
I=1
n—i—j
xEep(B 3 bue iy US,))

m=1
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2ji—1 —1
<C Y Z(o.mpﬂ[(Eexp(ﬁ IZ b,+,-(U(S,)—1)>I{SZJ.=O}>

LB —e)~ogn] <2j<n—i I=1

21 —1
+<Eexp <ﬁ Z bI(U(S/)+1)>I{Szj=0}> ]

I=1
Thus, by Lemma 5.2 we can show that the Lh.s. of (5.2) is less than

2i—1

—1
C Z Z(O.n)j'/z|:E<ECXp <ﬁ Z b,(U(S,)—1)>I{Szj=O}>

[upB)—e)-togn)<sZsn—i =1

2i—1 —1
+E<Eexp<ﬂ JZ b,(U(S,)+1)>I{SZj=0}> ]

=1
. —_ -]
< 0( 1 ) n 1 —(e/20u(f) —¢)

which implies the desired result. |

From Lemma 5.4 we can also see why u(f) given by Lemma 5.2 is just
the exponent related to the behavior of 4, which was described in
Theorem 5.3.

To state the next two lemmas, let us first introduce some notations.
For any given de(0,¢/2) we set u,=n’ and v,=n'"° Without loss of
generality we may assume u,=[u,] and v,=[v,]. Let

Jtn

¢(j)=exp <.5' ) b,.U(S,.)> T OSi) <ty +01 1 1og n)

i=1

’7;(-"1 s xz) = E,\-| I{A,."s(;z(ﬂ) —z)~logn}

X eXp <ﬁ Z b(j—l)u,,+iU(Si)> I{s,,"=x3}

i=1

Uy

Ci(xy, xa)=E exp <ﬁ Z b(j—l)u,,+iU(Si)) I{s,,"=_\-z}
i=1

i=

It is clear that 5,<{;. To complete the second part of the proof of
Theorem 5.3 we should prove that the following holds with a positive
probability:

Wj(xlaxz)S(l—n_l_E)Cj(xlsxz) (%)

for many x, and x,. From this we can derive that the following holds with
large probability:

n;(xy, X5) <n-¢

~ <n~E, j=1,., [n'?
Ci{xy, xa) / ]
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for many x, and x,. This then implies Theorem 5.3. To prove (*) we will
give a decomposition of {;(x;, x,) —n;(x;, X,). For this purpose we set

[un/2]
I,(n)=E, exp (ﬂ > b(j_l,,,”+,.U(S,-)>I{S[""m=0,

i=1

I,(n)=Eexp <ﬁ > bu‘—1>u,,+[u../2]+iU(Si)> lis, =0

i=1
tty— (un /2] — sn

13(}1) = E eXp <ﬁ Z b(j‘ Dty + [12/2] + 5y +iU(Si)> I{ Su"—[u,,/l]-.(”=-\'2}

i=1

I(n)=Eexp <ﬁ Z b(j—l)u,,+[u.,/2]+iU(Sl)> I{s,"=o;

i=1
[un/2] + sn

I,,("I)=E'\.| eXp <ﬂ Z b(j—l)u,,+iU(Si)> I{SI"+[,,’,/2)=0}

i=1

It is easy to see that {;(xy, x5) —n;(x,, X,) = I (n) I(n) I,(n). We now give
an estimate for I,(n) I,{(n) I1(n) (see Lemma 5.5 below), which will lead to
the proof of (*).

Suppose [u,/2] i1s even. Otherwise, we may consider [u,/2]+1
instead of [u,/2] below. Let s,=[(u(f)+¢)"'logn]. Without loss of
generality, we may assume s, is even.

Lemma 5.5. For any given £€(0, 1) and K= 1 there is a constant
C;€(0, oo) such that

13< U {1,(11)12(11)13(11)<exp(—582s,,)Cj(x,,xz)})

Ixtl.Ix2) < [ By + &)~ Vog n]

<Cn X
Proof. Let
t=sup{i<[u,/2]: S;=0}

By a large-deviation result we can show that for any given K> 1 there is
a constant M > 0 such that

- (un/2] + 54
P <E_\v1 eXp <ﬂ Z b(j——l)zl,,-s-iU(Si)) I{[u,,/Z]—r;M.\',,) >

i=1

I,(n) 12(11)>

n

<O(l)yn™* (5.3)
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We remark thatif S, . (,,»;=0, then S, »;| <s5,. By Lemma 5.1 (replacing

¢ there by &) and the Markov property we show that

[16n/2] + 50

EA-.eXp(/)’ ) bu—lm,,+iU(Si)>Iis,,,+[.,,,/z]=o.[u../zl—rsm.,}

i=1
["11/2] + 5
-5 E.\..exp</f 5 b<,-_.,.,,.+,-U(S,-))
|l <sn i=1

X ]{ Sl 21 = N2 s, fu,21= 0. [144/2] — T < M}

Ms, [an/2] — 4
< Z Z E.\'| eXp <ﬁ Z b(j—l)u,,+iU(Si)> I{S[,,ﬂ/g]_“:o}

h=1 |x|<s i=1

Sn su—bh
x ), Eexp <.3 Z b Vv + i+ Linr2] U(S.')) Iis, =0
xexp<‘ﬂ Z b(j—l)nn-H'

h=1
i=[up/2] - +1 >

XCXP<5 Z bijVyu+i+ L]

i=sy—h+1

i=1

[un/2]

R My Lun/2)—1
SSS" exp(zg-sn) Z E.\'] CXp <ﬁ z b(j—l)u,,+iU(Si)>

=1 i=1

X Iisuym-y =0}

Sn sp—h
x ), Eexp <ﬁ 2 byt i L U(S,.)> Lis,_,-o0}

h=1 i=1

Nl
x Eexp <ﬁ Z b(j—l)u,,+[u,./2]—l|+iU(Si)) 1{sl,=0}

i=1

h
x E exp <ﬂ Z b(j—-l)ll,,+s,,—lz+iU(Si)> 1{5,2=0}

i=1
< 8s,%exp(2¢e’s,) I,(n) I,(n)
By (5.3) we know that
P(I,(n) I(n) < (8s, exp(2¢3s,)) "' (1 —n ") Ii(n)) < O(1) n—X
By a similar reasoning (using Lemma 5.1) we show that

P(Iy(n) Ii{n) < (8s, exp(2e3s,)) ™' (1 —n~ ") {(x}, X)) < O(1)n =%
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Thus we obtain
P(I)(n) I,(n) 11(’7) (8s, exp(2es,)) 2 (1 —n~ ") (xy, x3))
<O0(l)n
Using this, we then complete the proof of Lemma 5.5. ||

(x) will be proven in the next lemma.

Lemma 5.6. For any given f§#0, K> 1, and ¢€(0, | A u(f)) there
are constants C,, Cs€(0, o0) and ipe [ —1, [u(B)/e*] + 1] such that

P( N {M 1 — C, expl —(u(B) - fosZ)s,,)D

Ixtl Ixaf S [t By +6)~Vlog n] C (Yl 4 '\’)

= Cslexp( —(ip+1) &%,) —n=%)

Proof. By Lemma 5.2 we can show that for any given e€(0, 1 A u(f))
there are a constant Cqe(0, o0) and ige [ —1, [u(B)/e*] + 1] such that

P (exP( —(P)—lig—1)e%) s,)

sp—1 —1
< <Eexp <[)’ Y b(US)+ 1)> 1,-55"=0:>

i=1

<exp( — (u(B) — ipe?) S")>

> O(1) exp( —(1(B) +€2) 5,) - exp((1( B) — io€) s,,)
> Cyexp(—(ip+ 1) &%)

By definition we know that

I3 I4(n)
Sn —1
=%<Eexp <ﬂ Z b(/ Dty + et /21 +10 U(S)+ 1)>1{Sx"=0}>

| —1
=302 W (EGXP<5 > bu—l)u,.+[u,,/2]+i(U(Si)“‘1)> f{Sx,,=°*>

i=1

Plexp(—pu(B) = (io—1) €%5,)) S I3 (n) Lu(m)) = C; exp( — (i + 1) £%s,)
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for some constant C,€(0, c0). By the Markov property of {S,} we have

Cilxy, Xa) —midxy, x3)

2E.\'|I{J“">.\',.) exp <ﬁ Z b(j—l)u,,+iU(Si)> I{S,,,):.\':}

i=1

= 1,(n) Iy(n) Ii(n)(1;"(n) I(n))
Thus, by Lemma 5.5 we have

-~

P< {1_’71'(«\'1»-\'2)
vl b2l S [ f) +6)7V log n] g/'(xl » ,\'-_,)

= exp[ _gzsn —/l(ﬁ) - (IO —1 )ezsn] })
= —Cen %+ Cyexp[ —(ip+ 1) &%,
which proves Lemma 5.6. |}

We are now in a position to complete the proof of Theorem 5.3.

Proof of Theorem 5.3. For any given ¢€(0,1 A u(f)),
Lemma 5.4 we know that

E})io,n)((log n)" A” = (‘Ll(ﬂ) “—8)_1)

< Epom < o {S;=0,0,=2(u(p)—¢) " log n}>

i=1

<Y EPO"(S,=0,0,>u(p)—¢) "' logn)

i=]

<0(1) n—(c/Zl(/l(/})—c)_l

which proves that

PO (logn) ™' 4,>u(p)—¢e)~ )= 0, n— o

by

To consider the other direction in the statement of the convergence in

Theorem 5.3, we set
PON(A) = (B, [ &) dP,  VAeF
A

and

A"(i)= max {[_k' S,=Sk=0, U(SI+1)="'=U(S[\._1)#0}

(i— Dy <k<l<iy
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Then, by the Markov property of {S;} we can show that

EI{(logn)"'dnS(/l(ﬂ)+s)_'} &(v,)

p

SE [ s <ium + o1 1ogmy E(04)

i=1

< Z 1,(0, xl)’72(x11xz)""70,,(“\‘:;,,—1"\’0,,) (54)
X e ¥ S DB+ )" og ]
Let
(X1, Xa) _ — () — ioed) s ;
A= N ———<1-Cye , j=1..,0,
bl bzl < L)+ tog ) L&i (X 15 X2)

where ipe [ —1, [u(B)/e*] + 1] was given in Lemma 5.6. We can choose a
large enough K> 1 such that

T
"_KS }‘e—(;l(/)‘)—lor).\,,

Since A,,.., 4, are independent, by Lemma 5.6 we have
P( i I, <3Csv,e” 0" ””l"'"> <Oo(l)yn™*
j=1
if 6€(0, 1) is small enough. If
=1

has occurred, then there is a constant Cgye(0, c0) such that r.hs. of (5.4)
is less than

o(1)(1— C4n—l+l(:+iof:2)(/1(/}}+e)”l) ' =8 lo+ DB+~

x z CI(O’ xl) Cl(xl ’ xl) e cv,,(xu,,—— 1» xu,,)
1X1 e |0, | S T2 +2)7 N log 1]
< Cyn*E&(v,)
if 0e(0, (¢ —&?)/{i(B) +¢}). From this we obtain that
B(PO"((logn)™ ' 4, <(u(B)+&)~)>Cn~2)<O(1)yn=2  (5.5)

We now use (5.5) to prove

P(O.n)((log n)—l A,,S(,U(ﬂ) +£)~1)_F, 0, n— o0 (56)
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In fact, it is clear that
|Sinl <(u(B)+&)"'logn,  i=1,.,0,
if (logn)=' 4, <(u(B)—¢e)~". Thus, Lhs. of (5.6) is less than

(EZO")~! E&(v,) P>"((log m) ™" 4, < (1(B) +&)™")
SPP"((logn) ™' 4, < (u(B) +¢)~")

From this and (5.5) we get indeed the desired result {5.6). This completes
the proof of Theorem 5.3. ||

Remark. The convergence stated in Theorem 5.3 is only proven to
be true in probability. It would be very interesting to prove that such a
convergence also holds almost surely. In fact, from the proof of
Theorem 5.3 we see that

lim PO"((logn)~' 4, <(u(pf)+e)~")=0 ae-P

n— co

Unfortunately, we are presently unable to get an almost sure convergence
in the other direction.

6. LOCALIZATION

In recent years there have been many studies on the localization of
random walks and diffusion processes (see, e.g., refs. 2, 6, and 10 and
references therein). In a similar spirit, in this section we shall investigate the
localization of the random walk {S,},., under the probability measure
P'®"_ Our main result in this section is as follows.

Theorem 6.1. (i) If u(B)€ (0, 1/8], then the following holds for any
given e (0, 1):

- l1—¢ l+¢ P
{0.n) -1
d <(l°g") n’i’?é‘n'S"e[(zu(ﬂ))””(2ﬂ(ﬂ>>'/2]> Lo

where u(f) was defined in Lemma 5.2.
(ii) If u(B) > 1/8, then the following holds for any given ¢ (0, 1):

l—¢ l+e¢ P
pom -1 . ’ L -
(( og n) ]rilgé"lS,le[l/4+2#(/;) 1/4+2;¢(/)’)D e
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Let us first make a remark on the value of u(f). By the Holder
inequality we can easily show that limg _, ., #(8) =0 and limg _ o+ 4(8) = c0.
Therefore, u(f) e (0, 1/8] if |B| is large enough, and u(f)>1/8 if |8] >0 is
sufficiently small. In other words, both cases in Theorem 6.1 can happen.
The proof of Theorem 6.1 is also involved. The idea to prove Theorem 6.1
is basically similar to the one used in the proof of Theorem 5.3. So we will
not give a detailed proof for Theorem 6.1. We will prove two lemmas.

Lemma 6.2. For f+#0 and any given ¢, €(0, 1) we have

lim EP°"( max |S,|=(x(B)+¢,)logn)=0

n— o0 I<ign
where
)= {(2#(/)’))-”2 wp<1s8
(1/4+2up))~",  w(p)>1/8

Remark. For the case of the ordinary random walk in Z', it is well
known that the quantity n~'? max, _, ., |S;| is weakly convergent to a real
random variable. This fact tells us that y(8) = (2u(8)) ~'/* for the case of
the ordinary random walk in Z'. The random walk discussed in the present
paper differs from an ordinary random walk by having an exponential term
as a statistical weight, a fact which induces a different relation between y(f)
and u(f), as given above.

Proof. For any given constant Cye (0, co) we set

2

g(x)= inf {£+ Coy} (6.1)
=2y 2y
It is easy to show that

(ZCO)—I/Z-\', Co<1/8

&) = {.\'( 1/442C,),  Co>1/8

For the simple random walk {S;} we have the following estimate [ for suf-
ficiently small ¢, (0, 1)]:

P(  max |Sil 2 (x(B) + &) — 2¢,) log n)

I<ig(j—Dealogn

(x(B)+¢&, — 2(‘32)2 log n>>

<0(1)10g"exp<‘< 2j—De
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By Lemma 5.4 we know that for any given &, € (0, 1) there is a constant
M =1 such that

EPO (4, > (Me,+¢,) logn) < O(1) n~2

where 4, was defined at the beginning of Section 5. Thus, as in the proof
of Lemma 5.4, by Lemma 5.2 and the Markov property of {S;} we can
show that

EP'®"( max |S,|=>(x(B)+¢&,)logn)
1<ign
M+1

n-l4 Z Z EP(O‘")(S,-=0; U(S,+:)=0

i=1 j=[2x(B)+e1)/e2]
forsomeue[[(j—1)e,logn]], [(j+1)e,logn]];

and U(S,,,)#0

forallve[l,u—1],

max 1Sy +il = (x(B) + &, — 2¢5) log n)
Ilsu<s[(j—1)erlogn]
SOy n~ 2+ 0(1)}( M+ 1)nlog nexp(—g(x(B) +&, —2e,) logn)) (6.2)

where g(x) was defined by (6.1) [replacing C, there by u(f)—e3]. It is
easy to show that g(x(f) + ¢, —2¢,) is less than

8—3 ” — L2012 _
<2,u(ﬂ)> +(&; —26,)2(u(B) — ), w(B)—e3<1/8

28% 81 _282

“Tat+ 20 T 1A+ 2B -2 u(B)—e2>1/8

Thus, if £, €(2¢,, 3¢,) and &, (0, 1) is sufficiently small, we have that the
Lh.s. of (6.2) is less than

Oy n=240(1)n-n~' 22 0(1)n—2"

which proves the desired result. |

To state the next lemma we introduce some notations. For any given
J€(0, ¢/2) we introduce u,, =n°® and v, =n'~° as in Section 5 and make the
same assumptions on them as in that section. For any given &5, £,€(0, 1)
we set

_(x(B)—¢)

= m w(B) +e4)(Jjes +e3)

822/83/3-4-22
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One can show that there 1s a j,e [[2(x(f) —e¢)/e;], o0 ) such that

q(jo) = inf 9(J)

F2 20 B) —¢)fe3]

Let t,=[j,&;logn] and assume that ¢, is even {otherwise, we may con-
sider ¢, + | rather than ¢, below). Let

! - p—
’h(-\ 1. xz) = E.\'|1{max1sis,,,' 1SH < (x(f) —¢) log n}

X eXp <ﬂ Z b(j—l)u,,+iU(Si)) I{S“"=.\'3}

i=1
The next lemma is an analog of Lemma 5.6.

Lemma 6.3. For any given 0 and suffuciently small ¢, ;€ (0, 1)
there are constants C,, C,e(0, o0) and ipe [ —1, [x(f)/es] + 1] such that

F( m {Mgl_cl exp(_sétn—'Tn)}>
Ixtl. Ival S (x(fB)—e)logn Cf(xl’ '\2)

=2 Cyexp(—ig+ 1) est,)
where {;(x,, x,) was defined in Section 5, and

T"=()5(/)’)—s)'(log n)*
2t

+(ﬂ(,8) +84) ’n_(fO— 1) 85[11

n

Proof. As in the proof of Lemma 5.6, by Lemma 5.2 we can show
that there are a constant C;e(0, c0) and ige[ —1, [u(f)/es]+ 1] such
that

In —1
P (E <exp <ﬂ Y bAU(S) + 1)) 1{5,"=0,>

i=1

€ [exp( _(ﬂ(ﬁ) _(10_ l)ss)tn)’ exp( _(l‘l(ﬂ) _iOES)tn)]>
= C3 exp( _(lo+ I)EStn)

As for I,(n) and I (n) given in Section 5, we introduce I5(n) and Ii(n),
replacing s, there by ¢,. Let

Ii(n)=Eexp (ﬂ Z b(j—l)u,,+[u,,/2]+iU(Si)>]{S,"=O}

i=1

x I{maxlsis/,, 1Si > (x(B) &) log n}
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Then we show that
(0, Xa) = mi(xy, x2) = Li(n) Iy(n) ()15~ ' (n) Ti(n))

As in the proof of Lemma 5.5, we obtain that for any given ;€ (0, 1) and
K=>1 there is a constant C, e (0, o0) such that

1~’< U {Il(n)Ig(n)I;(n)Sexp(—871,,)Cj(x1,x2)})<C4n—1<
111 Ix2] S (x(B)—e) logn

We remark that

P( max |S|>(x(B)—e)logn)

l<igy,

(2(8) —&)*(log n)2>

>O(l)exp<— 2

n

Then, as in the proof of Lemma 6.2, we show that
B, =N (n) Ii(n) = Csexp(—T,)) = Coexp( —(ip + 1) &5t,,)

for some constants Cs, Cg {0, oo). Therefore, if X1 is large enough,

f’< N {1—M> Cs exp(—sﬂ,,——T,,)})

Ixtl. Ix2l < (z(8) — &) log n {i(xy, x2)
1
25 Ceexp(—(ig+1) est,)

which proves the desired result. |

We remark that there is a constant gg € (0, 1), which is only related to
& &5, and &4, such that

(x(B)—&)*(log n)?
2t

+ (Au(ﬁ) +84)[n< (1 _88) log n

n

Thus, as in the proof of Theorem 5.3, we can use Lemmas 6.2 and 6.3 to
prove Theorem 6.1. We omit the details.

NOTE ADDED IN PROOF

It has been proven in ref. 13 that lim,_  p'“" (S,=x) exists with
probability one for any fixed k> 1 and xe Z'.
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